1 |
马淳安 等. 绿色电化学合成[M]. 北京: 化学工业出版社, 2016.
|
|
MA C N, et al. Green electrochemical synthesis[M]. Beijing: Chemical Industry Press, 2016.
|
2 |
马紫峰, 贺益君, 陈建峰. 新能源化工技术[J]. 化工进展, 2021, 40(9): 4687-4695.
|
|
MA Z F, HE Y J, CHEN J F. Renewable energy chemical engineering and technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4687-4695.
|
3 |
CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
|
4 |
D'AMORE-DOMENECH R, LEO T J. Sustainable hydrogen production from offshore marine renewable farms: Techno-energetic insight on seawater electrolysis technologies[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8006-8022.
|
5 |
YIN J, LIN N, LIN Z-Q, et al. Towards renewable energy storage: Understanding the roles of rice husk-based hierarchical porous carbon in the negative electrode of lead-carbon battery[J]. Journal of Energy Storage, 2019, 24: doi: 10.1016/j.est.2019.100756.
|
6 |
LOUIE S G, CHAN Y H, DA JORNADA F H, et al. Discovering and understanding materials through computation[J]. Nature Materials, 2021, 20(6): 728-735.
|
7 |
NORTHROP P W C, SUTHAR B, RAMADESIGAN V, et al. Efficient simulation and reformulation of lithium-ion battery models for enabling electric transportation[J]. Journal of the Electrochemical Society, 2014, 161(8): E3149-E3157.
|
8 |
DICKINSON E J F, EKSTRÖM H, FONTES E. Comsol multiphysics®: Finite element software for electrochemical analysis. A mini-review[J]. Electrochemistry Communications, 2014, 40: 71-74.
|
9 |
CUETO E, CHINESTA F. Real time simulation for computational surgery: A review[J]. Advanced Modeling and Simulation in Engineering Sciences, 2014, 1(1): 11.
|
10 |
BARAJAS-SOLANO D A, TARTAKOVSKY A M. Hybrid multiscale finite volume method for advection-diffusion equations subject to heterogeneous reactive boundary conditions[J]. Multiscale Modeling & Simulation, 2016, 14(4): 1341-1376.
|
11 |
PILON L, WANG H N, D'ENTREMONT A. Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors[J]. Journal of the Electrochemical Society, 2015, 162(5): A5158-A5178.
|
12 |
MACIAZEK D, PARUCH R J, POSTAWA Z, et al. Micro- and macroscopic modeling of sputter depth profiling[J]. The Journal of Physical Chemistry C, 2016: 120(44):25473-25480.
|
13 |
HOSSAIN M S, BEVAN K H. Exploring bridges between quantum transport and electrochemistry (II): A theoretical study of redox-active monolayers[J]. The Journal of Physical Chemistry C, 2016, 120(1): 188-194.
|
14 |
LIN N. Multiphysics modelling of electrochemical energy storage devices : Lithium-ion batteries and supercapacitors[D]. Technische Universität Braunschweig, 2020.
|
15 |
BARD A J, FAULKNER L R. Electrochemical methods: Fundamentals and applications[M]. 2nd ed. Wiley, 2001.
|
16 |
MILLER C T, CHRISTAKOS G, IMHOFF P T, et al. Multiphase flow and transport modeling in heterogeneous porous media: Challenges and approaches[J]. Advances in Water Resources, 1998, 21(2): 77-120.
|
17 |
BIESHEUVEL P M, FU Y, BAZANT M Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes[J]. Russian Journal of Electrochemistry, 2012, 48(6): 580-592.
|
18 |
NEWMAN J, THOMAS K E, HAFEZI H, et al. Modeling of lithium-ion batteries[J]. Journal of Power Sources, 2003, 119/120/121: 838-843.
|
19 |
YOCHELIS A. Spatial structure of electrical diffuse layers in highly concentrated electrolytes: A modified Poisson-Nernst-Planck approach[J]. The Journal of Physical Chemistry C, 2014, 118(11): 5716-5724.
|
20 |
WANG C Y, CHENG P. A multiphase mixture model for multiphase, multicomponent transport in capillary porous media (Ⅰ): Model development[J]. International Journal of Heat and Mass Transfer, 1996, 39(17): 3607-3618.
|
21 |
LAI W, CIUCCI F. Mathematical modeling of porous battery electrodes—Revisit of Newman's model[J]. Electrochimica Acta, 2011, 56(11): 4369-4377.
|
22 |
LIN N, RÖDER F, KREWER U. Multiphysics modeling for detailed analysis of multi-layer lithium-ion pouch cells[J]. Energies, 2018, 11(11): 2998.
|
23 |
KIM G H, SMITH K, LEE K J, et al. Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the Electrochemical Society, 2011, 158(8): A955.
|
24 |
LIN N, XIE X Z, SCHENKENDORF R, et al. Efficient global sensitivity analysis of 3D multiphysics model for Li-ion batteries[J]. Journal of The Electrochemical Society, 2018, 165(7): A1169-A1183.
|
25 |
ZHANG W L, LIN N, LIU D B, et al. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications[J]. Energy, 2017, 128: 618-625.
|
26 |
YIN J, LIN N, LIN Z Q, et al. Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation[J]. Journal of Electroanalytical Chemistry, 2019, 832: 266-274.
|
27 |
BAO J P, LIN N, GUO J X, et al. Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor[J]. Journal of Colloid and Interface Science, 2020, 574: 377-384.
|
28 |
BAO J P, LIN N, LIN H B, et al. Effect of the lead deposition on the performance of the negative electrode in an aqueous lead-carbon hybrid capacitor[J]. Journal of Energy Chemistry, 2021, 55: 509-516.
|
29 |
THAMPAN T, MALHOTRA S, TANG H, et al. Modeling of conductive transport in proton-exchange membranes for fuel cells[J]. Journal of The Electrochemical Society, 2000, 147(9): 3242.
|
30 |
BESSARABOV D, WANG H J, LI H, et al. PEM electrolysis for hydrogen production[M]. Boca: CRC Press, 2016.
|