1 |
陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485.
|
|
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485.
|
2 |
TURNER J A. A realizable renewable energy future[J]. Science, 1999, 285(5428): 687-689.
|
3 |
赵平, 张华民, 周汉涛, 等. 我国液流储能电池研究概况[J]. 电池工业, 2005, 10(2): 96-99.
|
|
ZHAO P, ZHANG H M, ZHOU H T, et al. Research outline of redox flow cells for energy storage in China[J]. Chinese Battery Industry, 2005, 10(2): 96-99.
|
4 |
THALLER L H. Electrically rechargeable redox flow cell[C]// 9th Intersociety Energy Conversion Engineering Conference, 1974.
|
5 |
WANG C X, YU B, LIU Y Z, et al. N-alkyl-carboxylate-functionalized anthraquinone for long-cycling aqueous redox flow batteries[J]. Energy Storage Materials, 2021, 36: 417-426.
|
6 |
PAN M G, LU Y, LU S Y, et al. The dual role of bridging phenylene in an extended bipyridine system for high-voltage and stable two-electron storage in redox flow batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44174-44183.
|
7 |
WANG C X, LI X, YU B, et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries[J]. ACS Energy Letters, 2020, 5(2): 411-417.
|
8 |
YAN W, WANG C, TIAN J, et al. All-polymer particulate slurry batteries[J]. Nature Communications, 2019, 10: 2513.
|
9 |
LEUNG P, LI X H, PONCE DE LEÓN C, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125.
|
10 |
CODINA G, ALDAZ A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22(7): 668-674.
|
11 |
XIA L, LONG T, LI W Y, et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis[J]. Small, 2020, 16(38): 2003321.
|
12 |
ZENG Y K, ZHAO T S, AN L, et al. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage[J]. Journal of Power Sources, 2015, 300: 438-443.
|
13 |
衣宝廉, 梁炳春, 张恩浚, 等. 铁铬氧化还原液流电池系统[J]. 化工学报, 1992, 43(3): 330-336.
|
|
YI B L, LIANG B C, ZHANG E J, et al. Iron/chromium redox flow cell system[J]. Journal of Chemical Industry and Engineering (China), 1992, 43(3): 330-336.
|
14 |
杨林, 王含, 李晓蒙, 等. 铁-铬液流电池250 kW/1.5 MW·h示范电站建设案例分析[J]. 储能科学与技术, 2020, 9(3): 751-756.
|
|
YANG L, WANG H, LI X M, et al. Introduction and engineering case analysis of 250 kW/1.5 MW·h ironchromium redox flow batteries energy storage demonstration power station[J]. Energy Storage Science and Technology, 2020, 9(3): 751-756.
|
15 |
肖涵谛, 黄忍, 张欢, 等. Fe(Ⅱ)-Cr(Ⅲ)电解液在石墨电极上的氧化还原动力学研究[J]. 电源技术, 2019, 43(7): 1179-1181, 1196.
|
|
XIAO H D, HUANG R, ZHANG H, et al. Redox kinetics of Fe(Ⅱ)-Cr(Ⅲ) hybrid electrolyte on graphite electrode[J]. Chinese Journal of Power Sources, 2019, 43(7): 1179-1181, 1196.
|
16 |
张路, 张文保. 某些有机胺和氯化铵添加剂对提高Cr3+/Cr2+电对贮存性能的研究[J]. 电源技术, 1991(2): 26-28, 31.
|
17 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
18 |
GAHN R F, HAGEDORN N, LING J S. Single cell performance studies on the Fe/Cr Redox Energy Storage System using mixed reactant solutions at elevated temperature[R]. NASA Technical Memorandum, 1983.
|
19 |
HAGEDORN. NASA redox storage system development project. final report[R]. 1984.
|
20 |
WANG S L, XU Z Y, WU X L, et al. Analyses and optimization of electrolyte concentration on the electrochemical performance of iron-chromium flow battery[J]. Applied Energy, 2020, 271: 115252.
|
21 |
WANG S L, XU Z Y, WU X L, et al. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery[J]. Electrochimica Acta, 2021, 368: 137524.
|
22 |
RUAN W Q, MAO J T, YANG S D, et al. Designing Cr complexes for a neutral Fe-Cr redox flow battery[J]. Chemical Communications (Cambridge, England), 2020, 56(21): 3171-3174.
|
23 |
ROBB B H, FARRELL J M, MARSHAK M P. Chelated chromium electrolyte enabling high-voltage aqueous flow batteries[J]. Joule, 2019, 3(10): 2503-2512.
|
24 |
ZHANG H, TAN Y, LI J Y, et al. Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance[J]. Electrochimica Acta, 2017, 248: 603-613.
|
25 |
ZHANG H, CHEN N, SUN C Y, et al. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery[J]. International Journal of Energy Research, 2020, 44(5): 3839-3853.
|
26 |
CHEN N, ZHANG H, LUO X D, et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery[J]. Electrochimica Acta, 2020, 336: 135646.
|
27 |
TIRUKKOVALLURI S R, GORTHI R K H. Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell[J]. Journal of New Materials for Electrochemical Systems, 2013, 16(4): 287-292.
|
28 |
WU C D, SCHERSON D A, CALVO E J, et al. A bismuth-based electrocatalyst for the chromous-chromic couple in acid electrolytes[J]. Journal of the Electrochemical Society, 1986, 133(10): 2109-2112.
|
29 |
AHN Y, MOON J, PARK S E, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal, 2021, 421: 127855.
|
30 |
SUN C Y, ZHANG H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery[J]. International Journal of Energy Research, 2019, 43(14): 8739-8752.
|
31 |
SUN C Y, ZHANG H, LUO X D, et al. A comparative study of Nafion and sulfonated poly (ether ether ketone) membrane performance for iron-chromium redox flow battery[J]. Ionics, 2019, 25(9): 4219-4229.
|
32 |
LIU Q H, GRIM G M, PAPANDREW A B, et al. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection[J]. Journal of the Electrochemical Society, 2012, 159(8): A1246-A1252.
|
33 |
ZENG Y K, ZHOU X L, AN L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744.
|
34 |
ZENG Y K, ZHOU X L, ZENG L, et al. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields[J]. Journal of Power Sources, 2016, 327: 258-264.
|
35 |
ZENG Y K, ZHAO T S, ZHOU X L, et al. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries[J]. Journal of Power Sources, 2017, 352: 77-82.
|