1 |
SUN Y M, LIU N, CUI Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: 16071.
|
2 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
3 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
4 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
5 |
LU Y X, RONG X H, HU Y S, et al. Research and development of advanced battery materials in China[J]. Energy Storage Materials, 2019, 23: 144-153.
|
6 |
LUO F, LIU B N, ZHENG J Y, et al. Review—nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2509-A2528.
|
7 |
AUPPERLE F, VON ASPERN N, BERGHUS D, et al. The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-anode-based Li-ion battery[J]. ACS Applied Energy Materials, 2019, 2(9): 6513-6527.
|
8 |
VEITH G M, BAGGETTO L, SACCI R L, et al. Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes[J]. Chemical Communications (Cambridge, England), 2014, 50(23): 3081-3084.
|
9 |
SEYFERTH D. Dimethyldichlorosilane and the direct synthesis of methylchlorosilanes. the key to the silicones industry[J]. Organometallics, 2001, 20(24): 4978-4992.
|
10 |
YU C H, LIN X Q, CHEN X, et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes[J]. Nano Letters, 2020, 20(7): 5176-5184.
|
11 |
姜晓萍, 左翔, 蔡烽, 等. 六氟磷酸锂的热分解动力学研究[J]. 电源技术, 2012, 36(4): 467-469.
|
|
JIANG X P, ZUO X, CAI F, et al. Decomposition kinetics research of LiFP6 at elevated temperature[J]. Chinese Journal of Power Sources, 2012, 36(4): 467-469.
|
12 |
YANG H, ZHUANG G V, ROSS P N J. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6[J]. Journal of Power Sources, 2006, 161(1): 573-579.
|
13 |
GAVRITCHEV K, SHARPATAYA G A, SMAGIN A, et al. Calorimetric study of thermal decomposition of lithium hexafluorophosphate[J]. Journal of Thermal Analysis and Calorimetry, 2003, 73: 71-83.
|
14 |
YU C H, CHEN X, XIAO Z X, et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions[J]. Nano Letters, 2019, 19(8): 5124-5132.
|
15 |
WANG X L, BAI S Z, LI F, et al. Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium[J]. The Journal of Prosthetic Dentistry, 2016, 116(3): 450-456.
|
16 |
FERRAZ E P, SVERZUT A T, FREITAS G P, et al. Bone tissue response to plasma-nitrided titanium implant surfaces[J]. Journal of Applied Oral Science: Revista FOB, 2015, 23(1): 9-13.
|
17 |
GUO L T, WU H T, LIU X C, et al. Effect of fluoride corrosion on the bonding strength of Ti-porcelain under static loads[J]. Materials Letters, 2009, 63(28): 2486-2488.
|
18 |
RIZZI M, GATTI G, MIGLIARIO M, et al. Effect of zirconium nitride physical vapor deposition coating on preosteoblast cell adhesion and proliferation onto titanium screws[J]. The Journal of Prosthetic Dentistry, 2014, 112(5): 1103-1110.
|
19 |
GUO L T, LIU X C, HE Z Y, et al. Effect of fluoride corrosion on the bonding strength of Ti-porcelain[J]. Materials Letters, 2008, 62(14): 2200-2202.
|
20 |
NAKAGAWA M, MATONO Y, MATSUYA S, et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments[J]. Biomaterials, 2005, 26(15): 2239-2246.
|
21 |
LIU X Y, CHU P K, DING C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Materials Science and Engineering: Reports, 2004, 47(3/4): 49-121.
|
22 |
刘马林. 流化床-化学气相沉积技术在先进核燃料制备中的应用进展[J]. 化工进展, 2019, 38(4): 1646-1653.
|
|
LIU M L. Research activities on FB-CVD technology application in advanced nuclear fuel fabrication[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1646-1653.
|
23 |
LIU R Z, ZHAO J, LIU M L, et al. Preparation, performance and nuclear applications of silicon carbide materials prepared by FB-CVD method[J]. Journal of the Chinese Ceramic Society, 2020, 48(3): 381-390.
|
24 |
KATOH Y, SNEAD L L. Silicon carbide and its composites for nuclear applications-Historical overview[J]. Journal of Nuclear Materials, 2019, 526: doi: 10.1016/j.jnucmat.2019.151849.
|
25 |
KOYANAGI T, TERRANI K, HARRISON S, et al. Additive manufacturing of silicon carbide for nuclear applications[J]. Journal of Nuclear Materials, 2021, 543: doi: 10.1016/j.jnucmat. 2020.152577.
|