储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1934-1946.doi: 10.19799/j.cnki.2095-4239.2022.0195
王培灿(), 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国()
收稿日期:
2022-04-07
修回日期:
2022-05-08
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
王培灿,王保国
E-mail:bgwang@tsinghua.edu.cn;wangpcleo@foxmail.com
作者简介:
王培灿(1993—),男,博士研究生,主要研究方向为储能科学与技术,E-mail:wangpcleo@foxmail.com;
基金资助:
WANG Peican(), WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo()
Received:
2022-04-07
Revised:
2022-05-08
Online:
2022-06-05
Published:
2022-06-13
Contact:
WANG Peican, WANG Baoguo
E-mail:bgwang@tsinghua.edu.cn;wangpcleo@foxmail.com
摘要:
氢能作为战略性产业,是未来国家能源体系的重要组成部分,为终端用户提供绿色低碳的能源载体。利用电解水制氢过程,有利于消纳大规模可再生清洁能源,促进国家能源结构调整。为了满足大规模、高效率、长寿命的电解水装备需求,亟需将界面工程原理与宏量放大工艺相结合,推动纳米技术走向产业化。本综述归纳界面工程研究现状,针对自支撑催化电极应用,以增强电极的稳定性与电催化活性为目标,重点介绍自支撑催化电极的微观结构调控方法,阐明3种催化界面(催化剂-基底界面、催化剂内部界面、催化电极-电解液界面)的调控策略,以及工程放大与宏量制备技术。在此基础上,指明高性能、高稳定的自支撑催化电极未来的研究方向。
中图分类号:
王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946.
WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting[J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946.
1 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998. |
3 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
4 | STAMENKOVIC V R, STRMCNIK D, LOPES P P, et al. Energy and fuels from electrochemical interfaces[J]. Nature Materials, 2017, 16(1): 57-69. |
5 | 国家能源局. 国家能源局举行新闻发布会介绍2021年上半年能源经济形势等情况 [R/OL]. [2021-07-29]. http://wwwneagovcn/2021-07/29/c_1310093667htm. |
6 | TANG C, WANG H F, ZHANG Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(4): 881-889. |
7 | JAKA Tušek, KURT Engelbrecht, Dan ERIKSEN, et al. A regenerative elastocaloric heat pump[J]. Nature Energy, 2016, 74(1): 16134. |
8 | GLENK G, REICHELSTEIN S. Economics of converting renewable power to hydrogen[J]. Nature Energy, 2019, 4(3): 216-222. |
9 | DOTAN H, LANDMAN A, SHEEHAN S W, et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting[J]. Nature Energy, 2019, 4(9): 786-795. |
10 | SYMES M D, CRONIN L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5(5): 403-409. |
11 | VAN H N. The clean hydrogen future has already begun [EB/OL] [2019-04-23]. https://wwwieaorg/newsroom/news/2019/april/the-clean-hydrogen-future-has-already-begunhtml. |
12 | LAGADEC M F, GRIMAUD A. Water electrolysers with closed and open electrochemical systems[J]. Nature Materials, 2020, 19(11): 1140-1150. |
13 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书 [R/OL]. [2020-02-20]. http://wwwtanjiaoyicom/article-27580-1html. |
14 | GROCHALA W. First there was hydrogen[J]. Nature Chemistry, 2015, 7(3): 264. |
15 | ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
16 | CONWAY B E, TILAK B V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H[J]. Electrochimica Acta, 2002, 47(22/23): 3571-3594. |
17 | DUBOUIS N, GRIMAUD A. The hydrogen evolution reaction: From material to interfacial descriptors[J]. Chemical Science, 2019, 10(40): 9165-9181. |
18 | YU X W, ZHAO J, ZHENG L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? [J]. ACS Energy Letters, 2018, 3(1): 237-244. |
19 | WANG J, XU F, JIN H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications[J]. Advanced Materials, 2017, 29(14): doi:10.1002/adma.201605838. |
20 | SULTAN S, TIWARI J N, SINGH A N, et al. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting[J]. Advanced Energy Materials, 2019, 9(22): doi:10.1002/aenm.201900624. |
21 | SUN H M, YAN Z H, LIU F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): doi:10.1002/adma.201806326. |
22 | MAHMOOD N, YAO Y D, ZHANG J W, et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions[J]. Advanced Science, 2018, 5(2): doi:10.1002/advs.201700464. |
23 | WANG M, ZHANG L, HE Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2021, 9(9): 5320-5363. |
24 | MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569. |
25 | SANTOS D M F, SEQUEIRA C A C, FIGUEIREDO J L. Hydrogen production by alkaline water electrolysis[J]. Química Nova, 2013, 36(8): 1176-1193. |
26 | OJHA K, SAHA S M, DAGAR P, et al. Nanocatalysts for hydrogen evolution reactions[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(10): 6777-6799. |
27 | SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
28 | LI D G, PARK E J, ZHU W L, et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers[J]. Nature Energy, 2020, 5(5): 378-385. |
29 | WANG P C, JIA T, WANG B G. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting[J]. Journal of Power Sources, 2020, 474: doi:10.1016/j.jpowsour.2020.228621. |
30 | SUN H M, XU X B, YAN Z H, et al. Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(44): 22062-22069. |
31 | LI J, ZHENG G F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts[J]. Advanced Science, 2017, 4(3): doi:10.1002/advs.201600380. |
32 | YAN Z H, SUN H M, CHEN X, et al. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution[J]. Nature Communications, 2018, 9: 2373. |
33 | WANG P C, JIA T, WANG B G. Review—recent advance in self-supported electrocatalysts for rechargeable zinc-air batteries[J]. Journal of the Electrochemical Society, 2020, 167(11): doi:10.1149/1945-7111/aba96e. |
34 | WAN L, WANG P C. Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8356-8376. |
35 | WANG P C, WANG B G. Interface engineering of binder-free earth-abundant electrocatalysts for efficient advanced energy conversion[J]. ChemSusChem, 2020, 13(18): 4795-4811. |
36 | YANG H Y, DRIESS M, MENEZES P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials, 2021, 11(39): doi:10.1002/aenm.202170153. |
37 | WANG P C, WANG B G. C-O-Co bond-stabilized CoP on carbon cloth toward hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(15): 9209-9219. |
38 | WANG P C, WANG R Z, XU Q, et al. Role of the interfacial effect between the substrate and Co(OH)2 layer in electrochemical oxygen evolution[J]. ACS Applied Energy Materials, 2021, 4(9): 9487-9497. |
39 | CLIMENT M J, CORMA A, IBORRA S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals[J]. Chemical Reviews, 2011, 111(2): 1072-1133. |
40 | KIM J, SOMORJAI G A. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy[J]. Journal of the American Chemical Society, 2003, 125(10): 3150-3158. |
41 | BASHYAM R, ZELENAY P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107): 63-66. |
42 | SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nature Materials, 2012, 11(6): 550-557. |
43 | ZHANG B, LIU J, WANG J S, et al. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution[J]. Nano Energy, 2017, 37: 74-80. |
44 | NIU S Q, SUN Y C, SUN G J, et al. Stepwise electrochemical construction of FeOOH/Ni(OH)2 on Ni foam for enhanced electrocatalytic oxygen evolution[J]. ACS Applied Energy Materials, 2019, 2(5): 3927-3935. |
45 | HU J, ZHANG C X, JIANG L, et al. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media[J]. Joule, 2017, 1(2): 383-393. |
46 | LYU Q L, YANG L, WANG W, et al. One-step construction of core/shell nanoarrays with a holey shell and exposed interfaces for overall water splitting[J]. Journal of Materials Chemistry A, 2019, 7(3): 1196-1205. |
47 | WANG P C, WAN L, LIN Y Q, et al. MoS2 supported CoS2 on carbon cloth as a high-performance electrode for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16566-16574. |
48 | ZHANG J, WANG T, LIU P, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy & Environmental Science, 2016, 9(9): 2789-2793. |
49 | ZOU X X, GOSWAMI A, ASEFA T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. Journal of the American Chemical Society, 2013, 135(46): 17242-17245. |
50 | YANG R, ZHOU Y M, XING Y Y, et al. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media[J]. Applied Catalysis B: Environmental, 2019, 253: 131-139. |
51 | YANG Y, YAO H Q, YU Z H, et al. Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range[J]. Journal of the American Chemical Society, 2019, 141(26): 10417-10430. |
52 | XU W W, LU Z Y, SUN X M, et al. Superwetting electrodes for gas-involving electrocatalysis[J]. Accounts of Chemical Research, 2018, 51(7): 1590-1598. |
53 | WANG P C, WAN L, LIN Y Q, et al. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density[J]. ChemSusChem, 2019, 12(17): 4038-4045. |
54 | LI J, ZHU Y Y, CHEN W, et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction[J]. Joule, 2019, 3(2): 557-569. |
55 | WANG P C, LIN Y Q, XU Q, et al. Acid-corrosion-induced hollow-structured NiFe-layered double hydroxide electrocatalysts for efficient water oxidation[J]. ACS Applied Energy Materials, 2021, 4(9): 9022-9031. |
56 | GAO X Q, CHEN Y D, SUN T, et al. Karst landform-featured monolithic electrode for water electrolysis in neutral media[J]. Energy & Environmental Science, 2020, 13(1): 174-182. |
[1] | 徐进, 丁显, 宫永立, 何广利, 胡婷. 电解水制氢厂站经济性分析[J]. 储能科学与技术, 2022, 11(7): 2374-2385. |
[2] | 陈健鑫, 盛楠, 朱春宇, 饶中浩. 生物质碳负载镍基纳米颗粒及其电解水析氢性能[J]. 储能科学与技术, 2022, 11(5): 1350-1357. |
[3] | 林楠, KREWER Ulrike, ZAUSCH Jochen, STEINER Konrad, 林海波, 冯守华. 电化学能量储存和转换体系多物理场模型的建立及其应用[J]. 储能科学与技术, 2022, 11(4): 1149-1164. |
[4] | 张申智, 王立开, 孙迎港, 吕恒, 杨子寅, 李磊磊, 李忠芳. 二维碳载Au4Pd2催化剂的构建及其电催化性能[J]. 储能科学与技术, 2021, 10(6): 2028-2038. |
[5] | 邹文午, 蒋国星, 杜丽. 共价有机框架材料(COFs)在氧电极电催化中的研究进展[J]. 储能科学与技术, 2021, 10(6): 1891-1905. |
[6] | 张诗诗, 秦棪阳, 苏亚琼. 析氢反应中氮掺杂石墨烯负载金属单/双原子催化活性起源[J]. 储能科学与技术, 2021, 10(6): 2008-2012. |
[7] | 宋乃建, 郭明媛, 南皓雄, 喻嘉. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917. |
[8] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[9] | 苏秀丽, 廖文俊, 李严. 分步法电解水制氢的机遇与挑战[J]. 储能科学与技术, 2021, 10(1): 87-95. |
[10] | 朱子岳, 符冬菊, 陈建军, 曾燮榕. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
[11] | 许 可,王保国. 锌-空气电池空气电极研究进展[J]. 储能科学与技术, 2017, 6(5): 924-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||