储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1934-1946.doi: 10.19799/j.cnki.2095-4239.2022.0195

• 化工与储能专刊 • 上一篇    下一篇

基于界面工程的自支撑催化电极用于电解水制氢

王培灿(), 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国()   

  1. 清华大学化学工程系,北京 100084
  • 收稿日期:2022-04-07 修回日期:2022-05-08 出版日期:2022-06-05 发布日期:2022-06-13
  • 通讯作者: 王培灿,王保国 E-mail:bgwang@tsinghua.edu.cn;wangpcleo@foxmail.com
  • 作者简介:王培灿(1993—),男,博士研究生,主要研究方向为储能科学与技术,E-mail:wangpcleo@foxmail.com
  • 基金资助:
    国家重点研发计划(2020YFB1505602);国家自然科学基金面上项目(21776154)

Interface engineering of self-supported electrode for electrochemical water splitting

WANG Peican(), WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo()   

  1. Department of chemical engineering, Tsinghua University, Beijing 100084, China
  • Received:2022-04-07 Revised:2022-05-08 Online:2022-06-05 Published:2022-06-13
  • Contact: WANG Peican, WANG Baoguo E-mail:bgwang@tsinghua.edu.cn;wangpcleo@foxmail.com

摘要:

氢能作为战略性产业,是未来国家能源体系的重要组成部分,为终端用户提供绿色低碳的能源载体。利用电解水制氢过程,有利于消纳大规模可再生清洁能源,促进国家能源结构调整。为了满足大规模、高效率、长寿命的电解水装备需求,亟需将界面工程原理与宏量放大工艺相结合,推动纳米技术走向产业化。本综述归纳界面工程研究现状,针对自支撑催化电极应用,以增强电极的稳定性与电催化活性为目标,重点介绍自支撑催化电极的微观结构调控方法,阐明3种催化界面(催化剂-基底界面、催化剂内部界面、催化电极-电解液界面)的调控策略,以及工程放大与宏量制备技术。在此基础上,指明高性能、高稳定的自支撑催化电极未来的研究方向。

关键词: 氧析出反应, 氢析出反应, 界面工程, 电催化剂, 电解水制氢

Abstract:

Hydrogen energy, as a strategic emerging industry, is an essential part of the future national energy system and decarbonization energy carrier for end users. Hydrogen generation via water electrolysis benefits large-scale renewable energy consumption and the national energy structure transformation. To fulfill the need for large-scale, highly efficient, and long-life water electrolyzers, integrating interfacial engineering concepts and manufacturing methods to enhance nanotechnology industrialization is crucial. Based on interfacial engineering principles, this review summarizes recent progress on self-supported electrodes, with a focus on improving the stability of the electrode structure and electrocatalytic activity, and examines the influence of microstructure on catalytic performance, particularly at three key interfaces (catalytic sites/substrate interface, interface among catalysts, and electrode/electrolyte interface). Moreover, we discuss strategies for developing self-supported catalytic electrodes with high activity and stability.

Key words: oxygen evolution reaction (OER), hydrogen evolution reaction (HER), interfacial engineering, electrocatalysts, water electrolysis

中图分类号: