储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2007-2022.doi: 10.19799/j.cnki.2095-4239.2022.0330
申晓宇(), 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()
收稿日期:
2022-06-16
出版日期:
2022-07-05
发布日期:
2022-06-29
通讯作者:
黄学杰
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
申晓宇(1996—),男,博士研究生,研究方向为锂电池,E-mail:shenxiaoyu19@mails.ucas.ac.cn;
Xiaoyu SHEN(), Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()
Received:
2022-06-16
Online:
2022-07-05
Published:
2022-06-29
Contact:
Xuejie HUANG
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2022年4月1日至2022年5月31日上线的锂电池研究论文,共有3406篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料、镍酸锂、钴酸锂和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。负极材料的研究重点包括硅基负极的界面构筑、金属锂负极的界面构筑及三维结构。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括适应高电压正极材料、抑制过渡金属离子溶出和界面副反应及提升金属锂负极、石墨负极电池性能的添加剂与溶剂研究,对于提高电池低温性能和安全性也有涉及。针对固态电池,复合正极制备、双层电解质结构、锂界面枝晶及副反应抑制有多篇。其他电池技术主要偏重液态锂硫电池正极设计、补锂和预锂化技术,锂空气和锂碘电池亦有研究。表征分析涵盖了层状氧化物正极结构变化和过渡金属离子溶出、SEI形成、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及固态电解质中锂离子输运机理、固态电解质与Li的界面。
申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022.
Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022.
1 | GOONETILLEKE D, MAZILKIN A, WEBER D, et al. Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux[J]. Journal of Materials Chemistry A, 2022, 10(14): 7841-7855. |
2 | LIU C Y, XIE G M, XU Z Q, et al. Improved zero-charge storage performance of LiCoO2/mesocarbon microbead lithium-ion batteries by Li5FeO4 cathode additive[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16117-16124. |
3 | YANG X R, WANG C W, YAN P F, et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering[J]. Advanced Energy Materials, 2022, 12(23): doi: 10.1002/aenm. 202200197. |
4 | YE B, CAI M Z, XIE M, et al. Constructing robust cathode/electrolyte interphase for ultrastable 4.6 V LiCoO2 under -25 ℃[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19561-19568. |
5 | KIM D H, SONG J H, JUNG C H, et al. Stepwise dopant selection process for high-nickel layered oxide cathodes[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202200136. |
6 | KIM Y S, KIM J H, SUN Y K, et al. Evolution of a radially aligned microstructure in boron-doped Li[Ni0.95Co0.04Al0.01]O2 cathode particles[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17500-17508. |
7 | NAMKOONG B, PARK N Y, PARK G T, et al. High-energy Ni-rich cathode materials for long-range and long-life electric vehicles[J]. Advanced Energy Materials, 2022, 12(21): doi: 10.1002/aenm.202200615. |
8 | CHENG Y, SUN Y, CHU C T, et al. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries[J]. Nano Research, 2022, 15(5): 4091-4099. |
9 | WANG L G, LEI X C, LIU T C, et al. Regulation of surface defect chemistry toward stable Ni-rich cathodes[J]. Advanced Materials, 2022, 34(19): doi: 10.1002/adma.202200744. |
10 | QIU L, SONG Y, ZHANG M K, et al. Structural reconstruction driven by oxygen vacancies in layered Ni-rich cathodes[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200022. |
11 | OU X, LIU T C, ZHONG W T, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy[J]. Nature Communications, 2022, 13: 2319. |
12 | ZHANG L H, WANG S W, ZHU L, et al. Synthesis design of interfacial nanostructure for nickel-rich layered cathodes[J]. Nano Energy, 2022, 97: doi: 10.1016/j.nanoen.2022.107119. |
13 | PHAM H Q, KONDRACKI Ł, TARIK M, et al. Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode[J]. Journal of Power Sources, 2022, 527: doi: 10.1016/j.jpowsour.2022.231181. |
14 | GUO W, ZHANG Y, LIN L, et al. C materials by solid-liquid-gas integrated interface engineering[J]. Nano Energy, 2022, 97. |
15 | CHEN T C, WU H M, ZHOU D F, et al. The CeF4-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for 5 V lithium-ion batteries[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(15): 11712-11724. |
16 | LIU X, ZHANG T Y, SHI X X, et al. Hierarchical sulfide-rich modification layer on SiO/C anode for low-temperature Li-ion batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202104531. |
17 | LI D D, XIE C, GAO Y, et al. Inverted anode structure for long-life lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202200584. |
18 | LU G, NAI J, YUAN H, et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode[J]. ACS Nano, 2022: doi: 10.1021/acsnano.2c04025. |
19 | HUANG M Z, HU T, ZHANG Y T, et al. In situ constructing a stable solid electrolyte interface by multifunctional electrolyte additive to stabilize lithium metal anodes for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17959-17967. |
20 | DONG Q Y, HONG B, FAN H L, et al. A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode[J]. Energy Storage Materials, 2022, 45: 1220-1228. |
21 | LI C, LI Y, YU Y K, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19437-19447. |
22 | QIAN S S, XING C, ZHENG M T, et al. CuCl2-modified lithium metal anode via dynamic protection mechanisms for dendrite-free long-life charging/discharge processes[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103480. |
23 | DI J, YANG J L, TIAN H, et al. Dendrites-free lithium metal anode enabled by synergistic surface structural engineering[J]. Advanced Functional Materials, 2022, 32(23): doi: 10.1002/adfm.202200474. |
24 | LI S M, HUANG J L, CUI Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes[J]. Nature Nanotechnology, 2022: 1-9. |
25 | LI Z H, DING X S, FENG W, et al. Aligned artificial solid electrolyte interphase layers as versatile interfacial stabilizers on lithium metal anodes[J]. Journal of Materials Chemistry A, 2022, 10(19): 10474-10483. |
26 | ZHANG D C, LIU Z B, WU Y W, et al. In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid-state lithium metal batteries[J]. Advanced Science, 2022, 9(12): doi: 10.1002/advs.202104277. |
27 | KIM M S, ZHANG Z W, RUDNICKI P E, et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries[J]. Nature Materials, 2022, 21(4): 445-454. |
28 | KIM Y, WALUYO I, HUNT A, et al. Avoiding CO2 improves thermal stability at the interface of Li7La3Zr2O12 electrolyte with layered oxide cathodes[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202102741. |
29 | KIM S, KIM J S, MIARA L, et al. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility[J]. Nature Communications, 2022, 13: 1883. |
30 | GIL-GONZÁLEZ E, YE L H, WANG Y C, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Materials, 2022, 45: 484-493. |
31 | DAWSON J A, ISLAM M S. A nanoscale design approach for enhancing the Li-ion conductivity of the Li10GeP2S12 solid electrolyte[J]. ACS Materials Letters, 2022, 4(2): 424-431. |
32 | SINGER C, TÖPPER H C, KUTSCH T, et al. Hydrolysis of argyrodite sulfide-based separator sheets for industrial all-solid-state battery production[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24245-24254. |
33 | LIU S J, ZHOU L, HAN J, et al. Super long-cycling all-solid-state battery with thin Li6PS5Cl-based electrolyte[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200660. |
34 | WANG Q T, LIU D X, MA X F, et al. Cl-doped Li10SnP2S12 with enhanced ionic conductivity and lower Li-ion migration barrier[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22225-22232. |
35 | AHMAD N, SUN S R, YU P W, et al. Design unique air-stable and Li-metal compatible sulfide electrolyte via exploration of anion functional units for all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202201528. |
36 | ZHOU L D, ZUO T T, KWOK C Y, et al. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes[J]. Nature Energy, 2022, 7(1): 83-93. |
37 | LIU L, ZHANG D C, ZHAO J W, et al. Synergistic effect of lithium salts with fillers and solvents in composite electrolytes for superior room-temperature solid-state lithium batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 2484-2494. |
38 | LIANG H P, ZARRABEITIA M, CHEN Z, et al. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries[J]. Advanced Energy Materials, 2022, 12(16): doi: 10.1002/aenm.202200013. |
39 | ZHANG K, WU F, WANG X R, et al. 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2022: doi: 10.1002/aenm.202200368. |
40 | CHANG Z, YANG H J, ZHU X Y, et al. A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments[J]. Nature Communications, 2022, 13: 1510. |
41 | YOU Y X, LIANG X X, WANG P H, et al. Single-ion gel polymer electrolyte based on poly(ether sulfone) for high-performance lithium-ion batteries[J]. Macromolecular Materials and Engineering, 2022, 307(4): doi: 10.1002/mame. 2100791. |
42 | DEL OLMO R, MENDES T C, FORSYTH M, et al. Mixed ionic and electronic conducting binders containing PEDOT: PSS and organic ionic plastic crystals toward carbon-free solid-state battery cathodes[J]. Journal of Materials Chemistry A, 2022: doi: 10.1039/D1TA09628A. |
43 | ALVAREZ-TIRADO M, GUZMÁN-GONZÁLEZ G, VAUTHIER S, et al. Designing boron-based single-ion gel polymer electrolytes for lithium batteries by photopolymerization[J]. Macromolecular Chemistry and Physics, 2022, 223(8): doi: 10.1002/macp.202100407. |
44 | PEI X P, LI Y J, OU T, et al. Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202205075. |
45 | WANG A X, GENG S X, ZHAO Z F, et al. In situ cross-linked plastic crystal electrolytes for wide-temperature and high-energy-density lithium metal batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202201861. |
46 | LEI S, ZENG Z Q, LIU M C, et al. Balanced solvation/de-solvation of electrolyte facilitates Li-ion intercalation for fast charging and low-temperature Li-ion batteries[J]. Nano Energy, 2022, 98: doi: 10.1016/j.nanoen.2022.107265. |
47 | ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13: 2575. |
48 | SONG D P, YANG Z W, ZHAO Q, et al. Dilute electrolyte to mitigate capacity decay and voltage fading of co-free Li-rich cathode for next-generation Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12264-12275. |
49 | ZHANG X Y, REN Y F, ZHANG J Y, et al. Synergistic effect of TMSPi and FEC in regulating the electrode/electrolyte interfaces in nickel-rich lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11517-11527. |
50 | BOULANGER T, ELDESOKY A, BUECHELE S, et al. Investigation of redox shuttle generation in LFP/graphite and NMC811/graphite cells[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/1945-7111/ac62c6. |
51 | TAN S, SHADIKE Z, LI J, et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V[J]. Nature Energy, 2022: doi: 10.1038/s41560-022-01020-x. |
52 | DUAN K J, NING J R, ZHOU L, et al. Synergistic inorganic-organic dual-additive electrolytes enable practical high-voltage lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10447-10456. |
53 | TAN L J, CHEN S Q, CHEN Y W, et al. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202203693. |
54 | YANG J Z, RODRIGUES M T F, YU Z, et al. Design of a scavenging pyrrole additive for high voltage lithium-ion batteries[J]. Journal of the Electrochemical Society, 2022, 169(4): doi: 10.1149/1.040507. |
55 | WANG Y, ZHANG Y J, DONG S Y, et al. An all-fluorinated electrolyte toward high voltage and long cycle performance dual-ion batteries[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202270075. |
56 | LI X, LIU J D, HE J, et al. Separator-wetted, acid- and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive[J]. Advanced Science, 2022: doi: 10.1002/advs.202201297. |
57 | CHEN C, YAN X D, ZHANG L Z. Disiloxanes containing tertiary amine and dioxaborolane groups as bifunctional electrolyte additive for improved cycling life of LiNi0.8Co0.1Mn0.1O2/graphite batteries[J]. ChemElectroChem, 2022, 9(6): doi: 10.1002/celc.202101628. |
58 | LI F, LIU J D, HE J, et al. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis[J]. Angewandte Chemie, 2022: doi: 10.1002/ange.202205091. |
59 | ZHANG L H, MIN F Q, LUO Y, et al. Practical 4.4 V Li||NCM811 batteries enabled by a thermal stable and HF free carbonate-based electrolyte[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107122. |
60 | WU C J, WU Y, XU X D, et al. Synergistic dual-salt electrolyte for safe and high-voltage LiNi0.8Co0.1Mn0.1O2// graphite pouch cells[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10467-10477. |
61 | JI S J, WANG X J, LI K Z, et al. 3D vertically aligned microchannel three-layer all ceramic lithium ion battery for high-rate and long-cycle electrochemical energy storage[J]. Small, 2022, 18(13): doi: 10.1002/smll.202107442. |
62 | FU F, LIU Y, SUN C, et al. Unveiling and alleviating chemical "crosstalk" of succinonitrile molecules in hierarchical electrolyte for high-voltage solid-state lithium metal batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12367. |
63 | CAO D X, SUN X, LI Y J, et al. Long-cycling sulfide-based all-solid-state batteries enabled by electrochemo-mechanically stable electrodes[J]. Advanced Materials, 2022: doi: 10.1002/adma.202200401. |
64 | HONG S B, LEE Y J, KIM U H, et al. All-solid-state lithium batteries: Li+-conducting ionomer binder for dry-processed composite cathodes[J]. ACS Energy Letters, 2022, 7(3): 1092-1100. |
65 | LI J, QI J Z, JIN F, et al. Room temperature all-solid-state lithium batteries based on a soluble organic cage ionic conductor[J]. Nature Communications, 2022, 13: 2031. |
66 | ZHOU X, ZHANG Y, SHEN M, et al. A highly stable Li-organic all-solid-state battery based on sulfide electrolytes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103932. |
67 | ZHOU H Y, YAN S S, LI J, et al. Lithium bromide-induced organic-rich cathode/electrolyte interphase for high-voltage and flame-retardant all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24469-24479. |
68 | CAO X G, TAN D C, GUO Q L, et al. High-performance fully-stretchable solid-state lithium-ion battery with a nanowire-network configuration and crosslinked hydrogel[J]. Journal of Materials Chemistry A, 2022, 10(21): 11562-11573. |
69 | CAI M L, JIN J, XIU T P, et al. In-situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface[J]. Energy Storage Materials, 2022, 47: 61-69. |
70 | REN Y X, SHIN W, MANTHIRAM A. Operating high-energy lithium-metal pouch cells with reduced stack pressure through a rational lithium-host design[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200190. |
71 | XIONG B Q, CHEN S Q, LUO X, et al. Plastic monolithic mixed-conducting interlayer for dendrite-free solid-state batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202105924. |
72 | GUEON D, KIM T, LEE J, et al. Exploring the Janus structure to improve kinetics in sulfur conversion of Li-S batteries[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106980. |
73 | ZOU K Y, ZHOU T F, CHEN Y Z, et al. Defect engineering in a multiple confined geometry for robust lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(18): doi: 10.1002/aenm.202103981. |
74 | SUN X, DA TIAN, SONG X Q, et al. In situ conversion to construct fast ion transport and high catalytic cathode for high-sulfur loading with lean electrolyte lithium-sulfur battery[J]. Nano Energy, 2022, 95: doi: 10.1016/j.nanoen.2022.106979. |
75 | REN Y, WANG M Y, YANG X Y, et al. Metal-porphyrin frameworks supported by carbon nanotubes: Efficient polysulfide electrocatalysts for lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 437: doi: 10.1016/j.cej.2022.135150. |
76 | AO Z R, ZOU Y L, ZOU H Y, et al. Enhanced cycling performance of all-solid-state Li-S battery enabled by PVP-blended PEO-based double-layer electrolyte[J]. Chemistry-A European Journal, 2022: doi: 10.1002/chem.202200543. |
77 | DO V, LEE S H, JANG E, et al. Aqueous quaternary polymer binder enabling long-life lithium-sulfur batteries by multifunctional physicochemical properties[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19353-19364. |
78 | FAN X L, LIU Y Q, TAN J Y, et al. An ultrathin and highly efficient interlayer for lithium-sulfur batteries with high sulfur loading and lean electrolyte[J]. Journal of Materials Chemistry A, 2022, 10(14): 7653-7659. |
79 | BINTANG H M, LEE S, KIM J T, et al. Self-constructed intimate interface on a silicon anode enabled by a phase-convertible electrolyte for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 805-813. |
80 | GAUTAM M, MISHRA G K, AHUJA A, et al. Direct-contact prelithiation of Si-C anode study as a function of time, pressure, temperature, and the cell ideal time[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17208-17220. |
81 | LI S W, ZHAO T, WANG K, et al. Unveiling the stress-buffering mechanism of the deep lithiated Ag nanowires: A polymer segmental motion strategy toward the ultra-robust Li metal anode[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202203010. |
82 | SHEN B L, ZHANG H J, WU Y J, et al. Co3O4 quantum dot-catalyzed lithium oxalate as a capacity and cycle-life enhancer in lithium-ion full cells[J]. ACS Applied Energy Materials, 2022, 5(2): 2112-2120. |
83 | SHEN B L, SARKODIE B, ZHANG L, et al. Self-sacrificing lithium source with high electrochemical activity and water oxygen stability and its application in Si-C//S battery[J]. Energy Storage Materials, 2022, 45: 687-695. |
84 | ZOU C, HUANG Y, ZHAO L, et al. Mn2+ ions capture and uniform composite electrodes with PEI aqueous binder for advanced LiMn2O4-based battery[J]. ACS Applied Materials & Interfaces, 2022, 14(12): 14226-14234. |
85 | BRILLONI A, MARCHESINI F, POLI F, et al. Performance comparison of LMNO cathodes produced with pullulan or PEDOT: PSS water-processable binders[J]. Energies, 2022, 15(7): 2608. |
86 | LI X L, WANG Y L, CHEN Z, et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery[J]. Angewandte Chemie International Edition, 2022, 61(9): doi: 10.1002/anie.202113576. |
87 | LI P, LI X L, GUO Y, et al. Highly thermally/electrochemically stable I-/I3 -bonded organic salts with high I content for long-life Li-I2 batteries[J]. Advanced Energy Materials, 2022, 12(15): doi: 10.1002/aenm.202103648. |
88 | ZHANG X H, CUI Z H, MANTHIRAM A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes[J]. Advanced Energy Materials, 2022, 12(14): doi: 10.1002/aenm.202103611. |
89 | KOMAGATA S, ITOU Y, KONDO H. Impact of surface layer formation during cycling on the thermal stability of the LiNi0.8Co0.1Mn0.1O2 cathode[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 8931-8937. |
90 | XU H Y, LI Z P, LIU T C, et al. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode[J]. Angewandte Chemie International Edition, 2022: doi: 10.1002/anie.202202894. |
91 | HAN B, LI X Y, WANG Q, et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte[J]. Advanced Materials, 2022, 34(13): doi: 10.1002/adma.202270101. |
92 | ZHOU M Y, FENG C, XIONG R Y, et al. Molecular insights into the structure and property variation of the pressure-induced solid electrolyte interphase on a lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24875-24885. |
93 | CHO J H, KIM K, CHAKRAVARTHY S, et al. An investigation of chemo-mechanical phenomena and Li metal penetration in all-solid-state lithium metal batteries using in situ optical curvature measurements[J]. Advanced Energy Materials, 2022, 12(19): doi: 10.1002/aenm.202200369. |
94 | GAO Z H, BAI Y, FU H Y, et al. Interphase formed at Li6.4La3Zr1.4Ta0.6O12/Li interface enables cycle stability for solid-state batteries[J]. Advanced Functional Materials, 2022, 32(20): doi: 10.1002/adfm.202112113. |
95 | SUN F, WANG C, OSENBERG M, et al. Clarifying the electro-chemo-mechanical coupling in Li10SnP2S12 based all-solid-state batteries[J]. Advanced Energy Materials, 2022, 12(13): doi: 10.1002/aenm.202103714. |
96 | SEBTI E, EVANS H A, CHEN H N, et al. Stacking faults assist lithium-ion conduction in a halide-based superionic conductor[J]. Journal of the American Chemical Society, 2022, 144(13): 5795-5811. |
97 | DIENER A, IVANOV S, HASELRIEDER W, et al. Evaluation of deformation behavior and fast elastic recovery of lithium-ion battery cathodes via direct roll-gap detection during calendering[J]. Energy Technology, 2022, 10(4): doi: 10.1002/ente.202101033. |
98 | ZHANG P, HAN B, YANG X M, et al. Revealing the intrinsic atomic structure and chemistry of amorphous LiO2-containing products in Li-O2 batteries using cryogenic electron microscopy[J]. Journal of the American Chemical Society, 2022, 144(5): 2129-2136. |
99 | FANG H, JENA P. Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect[J]. Nature Communications, 2022, 13: 2078. |
100 | SU H, LIU Y, ZHONG Y, et al. Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries[J]. Nano Energy, 2022, 96: doi: 10.1016/j.nanoen.2022.107104. |
[1] | 周宇昊, 徐椤赟, 张钟平, 刘灵冲, 南斌, 赵海祺. 基于数字孪生的锂电池热电耦合模型构建与仿真分析[J]. 储能科学与技术, 2023, 12(2): 536-543. |
[2] | 史冬梅, 王晶. 中国、日本、韩国电池技术和产业发展战略态势分析[J]. 储能科学与技术, 2023, 12(2): 615-628. |
[3] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[4] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[5] | 李路路, 陶正顺, 潘庭龙, 杨玮林, 胡官洋. 锂电池分数阶建模及SOC估计策略[J]. 储能科学与技术, 2023, 12(2): 544-551. |
[6] | 田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15. |
[7] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
[8] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[9] | 陈清炀, 何映晖, 余官定, 刘铭扬, 徐翀, 李振明. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. |
[10] | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
[11] | 张文舒, 胡方圆, 黄昊, 王旭东, 姚曼. 基于Ti基MXene的储钠负极及其性能调控机制[J]. 储能科学与技术, 2023, 12(1): 35-41. |
[12] | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
[13] | 袁紫微, 林楚园, 袁紫嫣, 孙晓丽, 钱庆荣, 陈庆华, 曾令兴. 锌离子电池低温性能研究进展[J]. 储能科学与技术, 2023, 12(1): 278-298. |
[14] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[15] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||