1 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120.
|
2 |
SCHIPPER F, AURBACH D. A brief review: Past, present and future of lithium ion batteries[J]. Russian Journal of Electrochemistry, 2016, 52(12): 1095-1121.
|
3 |
CHOI S, WANG G X. Advanced lithium-ion batteries for practical applications: Technology, development, and future perspectives[J]. Advanced Materials Technologies, 2018, 3(9): 1700376.
|
4 |
LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550.
|
5 |
BABU B, SIMON P, BALDUCCI A. Fast charging materials for high power applications[J]. Advanced Energy Materials, 2020, 10(29): 2001128.
|
6 |
AZUMA H, IMOTO H, YAMADA S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of Power Sources, 1999, 81/82: 1-7.
|
7 |
ZHANG S S. Dual-carbon lithium-ion capacitors: Principle, materials, and technologies[J]. Batteries & Supercaps, 2020, 3(11): 1137-1146.
|
8 |
FANG M D, HO T H, YEN J P, et al. Preparation of advanced carbon anode materials from mesocarbon microbeads for use in high C-rate lithium ion batteries[J]. Materials, 2015, 8(6): 3550-3561.
|
9 |
JO Y N, PARK M S, LEE E Y, et al. Increasing reversible capacity of soft carbon anode by phosphoric acid treatment[J]. Electrochimica Acta, 2014, 146: 630-637.
|
10 |
WANG D, ZHOU J S, LI Z P, et al. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries[J]. Ionics, 2019, 25(4): 1531-1539.
|
11 |
孙方静, 韦连梅, 张家玮, 等. 锂离子电池快充石墨负极材料的研究进展及评价方法[J]. 储能科学与技术, 2017, 6(6): 1223-1230.
|
|
SUN F J, WEI L M, ZHANG J W, et al. Research progress and evaluation methods of lithium-ion battery fast-charge graphite anode material[J]. Energy Storage Science and Technology, 2017, 6(6): 1223-1230.
|
12 |
WANG J, LIU J L, WANG Y G, et al. Pitch modified hard carbons as negative materials for lithium-ion batteries[J]. Electrochimica Acta, 2012, 74: 1-7.
|
13 |
赵清江, 张贵锋. 硬碳的预锂化及其电化学性能[J]. 储能科学与技术, 2021, 10(6): 2112-2116.
|
|
ZHAO Q J, ZHANG G F. Prelithiation of hard carbon and its electrochemical performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2112-2116.
|
14 |
VELURI P S, KATCHALA N, ANANDAN S, et al. Petroleum coke as an efficient single carbon source for high-energy and high-power lithium-ion capacitors[J]. Energy & Fuels, 2021, 35(10): 9010-9016.
|
15 |
ALVIN S, CAHYADI H S, HWANG J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials, 2020, 10(20): 2000283.
|
16 |
YU F D, QUE L F, WANG Z B, et al. Controllable synthesis of hierarchical ball-in-ball hollow microspheres for a high performance layered Li-rich oxide cathode material[J]. Journal of Materials Chemistry A, 2017, 5(19): 9365-9376.
|
17 |
SHAN X Y, WANG Y Z, WANG D W, et al. Armoring graphene cathodes for high-rate and long-life lithium ion supercapacitors[J]. Advanced Energy Materials, 2016, 6(6): 1502064.
|