储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2007-2022.doi: 10.19799/j.cnki.2095-4239.2022.0330

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2022.4.12022.5.31

申晓宇(), 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2022-06-16 出版日期:2022-07-05 发布日期:2022-06-29
  • 通讯作者: 黄学杰 E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:申晓宇(1996—),男,博士研究生,研究方向为锂电池,E-mail:shenxiaoyu19@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesApr. 12022 to May 312022

Xiaoyu SHEN(), Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-06-16 Online:2022-07-05 Published:2022-06-29
  • Contact: Xuejie HUANG E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2022年4月1日至2022年5月31日上线的锂电池研究论文,共有3406篇,选择其中100篇加以评论。层状正极材料的研究集中在高镍三元材料、镍酸锂、钴酸锂和富锂相材料,其相关研究关注表面包覆层、前驱体及合成条件、循环中的结构变化。负极材料的研究重点包括硅基负极的界面构筑、金属锂负极的界面构筑及三维结构。固态电解质的研究主要包括对硫化物固态电解质、氧化物固态电解质、聚合物与氧化物固体电解质复合材料的合成以及相关性能研究。液态电解液方面包括适应高电压正极材料、抑制过渡金属离子溶出和界面副反应及提升金属锂负极、石墨负极电池性能的添加剂与溶剂研究,对于提高电池低温性能和安全性也有涉及。针对固态电池,复合正极制备、双层电解质结构、锂界面枝晶及副反应抑制有多篇。其他电池技术主要偏重液态锂硫电池正极设计、补锂和预锂化技术,锂空气和锂碘电池亦有研究。表征分析涵盖了层状氧化物正极结构变化和过渡金属离子溶出、SEI形成、硫化物电解质的电化学与化学稳定性等方面。理论模拟工作涉及固态电解质中锂离子输运机理、固态电解质与Li的界面。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3128 papers online from Apr. 1, 2022 to May 31, 2022. 100 of them were selected to be highlighted. High-nickel ternary layered oxides, LiNiO2-LiCoO2 and Li-rich oxides as cathode materials are still under extensive investigations for surface coating, preparation of precursors and structural evolution with cycling. Reasearchs for anode focus on surface coating of the composite SiO/C anodes, 3D structure design and surface reconstruction of metallic lithium anode. Various solid state electrolytes including oxide, sulfide and composite materials have been studied. Meanwhile, large efforts are still devoted to liquid electrolytes for the optimizing the electrolyte for Li or graphite anode, and the high-voltage cathode materials, suppressing dissolution of transition metal ions and side reaction as well as improving low tempretuature performance and safety of Li-ion cell. For solid-state batteries, there are a few papers related to the design of composite cathode, bi-layer electrolyte, and inhibition of Li dendrite and side reactions. Other relevant works are also presented to cathode design of lithium sulfur battery using liquid electrolyte, lithium supplement and prelithiation technology. The characterization techniques are focused on dissolution of transition metal ions and structure transformation of layered oxides, SEI formation, electrochemical and chemical stability of the sulfide electrolytes. Theoretical simulations are directed to lithium-ion transportation mechanism in solid electrolytes and solid state electrolyte/Li interface.

Key words: lithium batteries, cathode material, anode material, solid state electrolyte, battery technology