1 |
HEUBERGER C F, MAC DOWELL N. Real-world challenges with a rapid transition to 100% renewable power systems[J]. Joule, 2018, 2(3): 367-370.
|
2 |
GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1187-1197.
|
3 |
KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27: 101047.
|
4 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
5 |
WANG Y R, CHEN R P, CHEN T, et al. Emerging non-lithium ion batteries[J]. Energy Storage Materials, 2016, 4: 103-129.
|
6 |
DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428.
|
7 |
曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761.
|
|
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761.
|
8 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
|
9 |
YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682.
|
10 |
YANG Z, LI G L, SUN J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 25: 724-730.
|
11 |
WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570.
|
12 |
MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3 - layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933.
|
13 |
龙宣有, 王捷, 赵丽娜, 等. 络合剂对铁基普鲁士蓝结构及储钠性能的影响[J]. 储能科学与技术, 2020, 9(1): 57-64.
|
|
LONG X Y, WANG J, ZHAO L N, et al. Effect of chelating agent on crystal structure and sodium storage performance of Fe-based Prussian blue[J]. Energy Storage Science and Technology, 2020, 9(1): 57-64.
|
14 |
杨旸, 严小敏, 杨德志, 等. 普鲁士蓝类钠离子电池正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 303-308.
|
|
YANG Y, YAN X M, YANG D Z, et al. Progress in Prussian blue in sodium ion cathode material[J]. Energy Storage Science and Technology, 2016, 5(3): 303-308.
|
15 |
LU Y H, WANG L, CHENG J G, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications (Cambridge, England), 2012, 48(52): 6544-6546.
|
16 |
WANG W L, GANG Y, HU Z, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries[J]. Nature Communications, 2020, 11: 980.
|
17 |
SONG J, WANG L, LU Y H, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664.
|
18 |
YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248.
|
19 |
PENG F W, YU L, GAO P Y, et al. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes[J]. Journal of Materials Chemistry A, 2019, 7(39): 22248-22256.
|
20 |
BAUER A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): 1702869.
|
21 |
JUAREZ ROBLES D, VYAS A A, FEAR C, et al. Overdischarge and aging analytics of Li-ion cells[J]. J Electrochem Soc, 2020, 167(9): 090558.
|