1 |
肖武坤, 张辉. 中国废旧车用锂离子电池回收利用概况[J]. 电源技术, 2020, 44(8): 1217-1222.
|
|
XIAO W K, ZHANG H. Recycling status of spent lithium-ion batteries for electric vehicle in China[J]. Chinese Journal of Power Sources, 2020, 44(8): 1217-1222.
|
2 |
周吉奎, 刘牡丹, 刘勇, 等. 硫酸-双氧水浸出废弃磷酸铁锂中锂的实验研究[J]. 矿冶工程, 2020, 40(6): 79-81.
|
|
ZHOU J K, LIU M D, LIU Y, et al. Experimental study on leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide[J]. Mining and Metallurgical Engineering, 2020, 40(6): 79-81.
|
3 |
贡纬华, 王华丹, 苏毅, 等. 锂离子电池磷酸铁锂正极材料研究进展[J]. 化工新型材料, 2020, 48(7): 30-33, 37.
|
|
GONG W H, WANG H D, SU Y, et al. Research progress in LiFePO4 electrode material for lithium-ion battery[J]. New Chemical Materials, 2020, 48(7): 30-33, 37.
|
4 |
HANNAN M A, HOQUE M M, MOHAMED A, et al. Review of energy storage systems for electric vehicle applications: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 771-789.
|
5 |
刘佩文, 董鹏, 孟奇, 等. 废旧磷酸铁锂电池正极材料固相法再生研究进展[J]. 无机盐工业, 2020, 52(9): 6-8, 14.
|
|
LIU P W, DONG P, MENG Q, et al. Research development of solid phase regeneration of cathode material of spent lithium iron phosphate batteries[J]. Inorganic Chemicals Industry, 2020, 52(9): 6-8, 14.
|
6 |
万青珂, 张洋, 郑诗礼, 等. 废旧磷酸铁锂正极粉磷酸浸出过程的优化及宏观动力学[J]. 化工进展, 2020, 39(6): 2495-2502.
|
|
WAN Q K, ZHANG Y, ZHENG S L, et al. Process optimization and kinetics for leaching spent lithium iron phosphate cathode powder by phosphate acid[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2495-2502.
|
7 |
鲍维东, 骆艳华, 裴晓东. 废旧磷酸铁锂锂离子电池正极的回收[J]. 电池, 2020, 50(2): 200-203.
|
|
BAO W D, LUO Y H, PEI X D. Recycle of cathode in spent lithium iron phosphate Li-ion battery[J]. Battery Bimonthly, 2020, 50(2): 200-203.
|
8 |
靳星, 贾美丽, 杜浩, 等. 废旧磷酸铁锂正极材料回收再生研究进展[J]. 有色金属工程, 2020, 10(11): 64-72.
|
|
JIN X, JIA M L, DU H, et al. Research progress on recovery of spent lithium iron phosphate cathode materials[J]. Nonferrous Metals Engineering, 2020, 10(11): 64-72.
|
9 |
XIN Y Y, GUO X M, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258.
|
10 |
陈永珍, 黎华玲, 宋文吉, 等. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247.
|
|
CHEN Y Z, LI H L, SONG W J, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247.
|
11 |
CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506.
|
12 |
伍德佑, 刘志强, 饶帅, 等. 废旧磷酸铁锂电池正极材料回收利用技术的研究进展[J]. 有色金属(冶炼部分), 2020(10): 70-78.
|
|
WU D Y, LIU Z Q, RAO S, et al. Research progress in recycling technology of cathode materials for spent lithium iron phosphate batteries[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 70-78.
|
13 |
王百年, 王宇, 刘京, 等. 废旧磷酸铁锂电池中锂元素的回收技术[J]. 电源技术, 2019, 43(1): 57-59, 116.
|
|
WANG B N, WANG Y, LIU J, et al. Recovery technology of lithium in waste lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2019, 43(1): 57-59, 116.
|
14 |
WANG X, WANG X Y, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216.
|
15 |
CAI G Q, FUNG K Y, NG K M, et al. Process development for the recycle of spent lithium ion batteries by chemical precipitation[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18245-18259.
|
16 |
王晕. PVDF黏结剂在锂离子电池中的应用研究[D]. 上海: 复旦大学, 2013。
|
|
WANG Y. The application of PVDF binder in lithium-ion battery[D]. Shanghai: Fudan University, 2013.
|
17 |
TSUKASAKI H, FUKUDA W, MORIMOTO H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8: 15613.
|
18 |
秦凯, 孙新华, 杨良君, 等. 高比能磷酸铁锂电池电解液浸润性能改善研究[J]. 电源技术, 2020, 44(8): 1099-1101, 1181.
|
|
QIN K, SUN X H, YANG L J, et al. Improvement of electrolyte wettability of high specific energy LiFePO4 battery[J]. Chinese Journal of Power Sources, 2020, 44(8): 1099-1101, 1181.
|
19 |
廖红英, 谢乐琼, 何向明, 等. LiPF6基电解液应用于下一代二次电池的研究进展[J]. 电池工业, 2021, 25(2): 97-105.
|
|
LIAO H Y, XIE L Q, HE X M, et al. Progress on LiPF6 based electrolytes for the next generation secondary batteries[J]. Chinese Battery Industry, 2021, 25(2): 97-105.
|
20 |
张蕾, 张绪平, 张思维, 等. 白藜芦醇对长期贮存锂离子电池电解液性能的影响[J]. 电化学, 2021, 27(1): 83-91.
|
|
ZHANG L, ZHANG X P, ZHANG S W, et al. Influence of resveratrol on performance of long-term storage's lithium-ion battery electrolyte[J]. Journal of Electrochemistry, 2021, 27(1): 83-91.
|
21 |
HAN J G, KIM K, LEE Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(20): doi: 10.1002/adma.201804822.
|
22 |
KIM H S, SHIN E J. Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes[J]. Bulletin of the Korean Chemical Society, 2013, 34(3): 851-855.
|
23 |
FISCHER M G, HUA X, WILTS B D, et al. Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1646-1653.
|
24 |
JIE Y F, YANG S H, HU F, et al. Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO4 batteries[J]. Thermochimica Acta, 2020, 684: doi:10.1016/j.tca.2019.178483.
|
25 |
刘伟峰, 陈月霞, 孙志英. PVDF热稳定性的测定及影响因素研究[J]. 信息记录材料, 2013, 14(4): 28-30.
|
|
LIU W F, CHEN Y X, SUN Z Y. Determination of the thermal stability of PVDF and study on its influencing factors[J]. Information Recording Materials, 2013, 14(4): 28-30.
|
26 |
WANG J J, YANG J L, TANG Y J, et al. Surface aging at olivine LiFePO4: A direct visual observation of iron dissolution and the protection role of nano-carbon coating[J]. J Mater Chem A, 2013, 1(5): 1579-1586.
|
27 |
乔延超, 陈若葵, 孙颉, 等. 含锂氟化渣的综合回收方法: CN109264749A[P]. 20190125.
|
|
QIAO Y C, CHEN R K, SUN J, et al. Comprehensive recycling method of lithium-containing fluoridized slag: CN109264749A[P]. 20190125.
|