1 |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
|
2 |
LIAO M, YE L, ZHANG Y, et al. The recent advance in fiber-shaped energy storage devices[J]. Advanced Electronic Materials, 2019, 5(1): 1800456.
|
3 |
YU P, ZENG Y X, ZHANG H Z, et al. Flexible Zn-ion batteries: Recent progresses and challenges[J]. Small, 2019, 15(7): 1804760.
|
4 |
YAMAMOTO T, SHOJI T. Rechargeable Zn∣ZnSO4∣MnO2-type cells[J]. Inorganica Chimica Acta, 1986, 117(2): L27-L28.
|
5 |
XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie (International Ed in English), 2012, 51(4): 933-935.
|
6 |
KORDESH K, WEISSENBACHER M. Rechargeable alkaline manganese dioxide/zinc batteries[J]. Journal of Power Sources, 1994, 51(1/2): 61-78.
|
7 |
PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1: 16039.
|
8 |
SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778.
|
9 |
ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901.
|
10 |
ZHOU J, SHAN L T, WU Z X, et al. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode[J]. Chemical Communications (Cambridge, England), 2018, 54(35): 4457-4460.
|
11 |
ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): 1400930.
|
12 |
LI W, WANG K L, CHENG S J, et al. An ultrastable presodiated titanium disulfide anode for aqueous "rocking-chair" zinc ion battery[J]. Advanced Energy Materials, 2019, 9(27): 1900993.
|
13 |
YAN L J, ZENG X M, LI Z H, et al. An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage[J]. Materials Today Energy, 2019, 13: 323-330.
|
14 |
SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564.
|
15 |
HUANG J H, GUO Z W, MA Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272.
|
16 |
LI G L, YANG Z, JIANG Y, et al. Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3[J]. Nano Energy, 2016, 25: 211-217.
|
17 |
PENG Z, WEI Q L, TAN S S, et al. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries[J]. Chemical Communications (Cambridge, England), 2018, 54(32): 4041-4044.
|
18 |
WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6): 543-549.
|
19 |
WAN F, ZHANG Y, ZHANG L L, et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries[J]. Angewandte Chemie (International Ed in English), 2019, 58(21): 7062-7067.
|
20 |
JI X L. A perspective of ZnCl2 electrolytes: The physical and electrochemical properties[J]. eScience, 2021, 1(2): 99-107.
|
21 |
ZHANG L, RODRÍGUEZ-PÉREZ I A, JIANG H, et al. ZnCl2 "water-in-salt" electrolyte transforms the performance of vanadium oxide as a Zn battery cathode[J]. Advanced Functional Materials, 2019, 29(30): 1902653.
|
22 |
王心怡, 李维杰, 韩朝, 等. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225.
|
|
WANG X Y, LI W J, HAN C, et al. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225.
|
23 |
HAO J N, YUAN L B, YE C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents[J]. Angewandte Chemie (International Ed in English), 2021, 60(13): 7366-7375.
|
24 |
SUN P, MA L, ZHOU W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angewandte Chemie (International Ed in English), 2021, 60(33): 18247-18255.
|
25 |
ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405.
|
26 |
WAN F, ZHANG L L, DAI X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9: 1656.
|
27 |
SENGUTTUVAN P, HAN S D, KIM S, et al. A high power rechargeable nonaqueous multivalent Zn/V2O5 battery[J]. Advanced Energy Materials, 2016, 6(24): 1600826.
|
28 |
NAVEED A, YANG H J, SHAO Y Y, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(36): e1900668.
|
29 |
WANG N, DONG X L, WANG B L, et al. Zinc-organic battery with a wide operation-temperature window from -70 to 150 ℃[J]. Angewandte Chemie (International Ed in English), 2020, 59(34): 14577-14583.
|
30 |
KUNDU D P, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1: 16119.
|
31 |
NAVEED A, YANG H J, YANG J, et al. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte[J]. Angewandte Chemie (International Ed in English), 2019, 58(9): 2760-2764.
|
32 |
HUANG S, ZHU J C, TIAN J L, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(64): 14480-14494.
|
33 |
SUN T L, KUROKAWA T, KURODA S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials, 2013, 12(10): 932-937.
|
34 |
ZHANG Q C, LI C W, LI Q L, et al. Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery[J]. Nano Letters, 2019, 19(6): 4035-4042.
|
35 |
ZHANG S L, YU N S, ZENG S, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(26): 12237-12243.
|
36 |
ZENG Y, ZHANG X, MENG Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(26): 2017Jul;29(26).
|
37 |
HUANG Yuan, ZHANG Jiyan, LIU Jiuwei, et al. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte[J]. Materials Today Energy, 2019, 14: 100349.
|
38 |
HUANG Yuan, LIU Jiuwei, ZHANG Jiyan, et al. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte[J]. RSC Advances, 2019, 9: 16313-9.
|
39 |
MCEVOY H, ROSS-MURPHY S B, CLARK A H. Large deformation and ultimate properties of biopolymer gels: 1. Single biopolymer component systems[J]. Polymer, 1985, 26: 1483-92.
|
40 |
LI Hongfei, LIU Zhuoxin, LIANG Guojin, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12: 3140-8.
|
41 |
YANG Qi, LI Qing, LIU Zhuoxin, et al. Dendrites in Zn-based batteries[J]. Advanced Materials, 2020, 32: 2001854.
|
42 |
MA Longtao, CHEN Shengmei, LI Xinliang, et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte[J]. Angewandte Chemie International Edition, 2020, 59: 23836-44.
|