1 |
YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
|
2 |
贾志军, 宋士强, 王保国. 液流电池储能技术研究现状与展望[J]. 储能科学与技术, 2012, 1(1): 50-57.
|
|
JIA Z J, SONG S Q, WANG B G. Acritical review on redox flow batteries for electrical energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 50-57.
|
3 |
SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058.
|
4 |
FORNER-CUENCA A, BRUSHETT F R. Engineering porous electrodes for next-generation redox flow batteries: Recent progress and opportunities[J]. Current Opinion in Electrochemistry, 2019, 18: 113-122.
|
5 |
王新伟, 刘丽梅, 王双印, 等. 聚丙烯腈基炭毡电极改性处理及电化学性能研究[J]. 化工新型材料, 2016, 44(5): 145-147.
|
|
WANG X W, LIU L M, WANG S Y, et al. Study on the modification and electrochemical property of PAN-carbon felt electrode[J]. New Chemical Materials, 2016, 44(5): 145-147.
|
6 |
王刚, 陈金伟, 朱世富, 等. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
|
|
WANG G, CHEN J W, ZHU S F, et al. Activation of carbon electrodes for all-vanadium redox flow battery[J]. Progress in Chemistry, 2015, 27(10): 1343-1355.
|
7 |
陈瑞芳, 周科. 全钒液流电池用聚丙烯腈炭毡改性研究[J]. 东方汽轮机, 2018(2): 69-72.
|
|
CHEN R F, ZHOU K. Study on modification of PAN-graphite felt for all vanadium redox flow battery[J]. Dongfang Turbine, 2018(2): 69-72.
|
8 |
EIFERT L, BANERJEE R, JUSYS Z, et al. Characterization of carbon felt electrodes for vanadium redox flow batteries: Impact of treatment methods[J]. Journal of the Electrochemical Society, 2018, 165(11): A2577-A2586.
|
9 |
KIM K J, PARK M S, KIM Y J, et al. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2015, 3(33): 16913-16933.
|
10 |
HUONG LE T X, BECHELANY M, CRETIN M. Carbon felt based-electrodes for energy and environmental applications: A review[J]. Carbon, 2017, 122: 564-591.
|
11 |
HE Z X, LV Y R, ZHANG T A, et al. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst[J]. Chemical Engineering Journal, 2022, 427: doi:10. 1016/j.cej.2021.131680.
|
12 |
ISIKGOR F H, BECER C R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers[J]. Polymer Chemistry, 2015, 6(25): 4497-4559.
|
13 |
赵广震. 生物质衍生多孔碳材料的制备及其超级电容储能性能研究[D]. 吉林: 东北电力大学, 2020.
|
|
ZHAO G Z. Preparation and supercapacitive storage properties of biomass derived porous carbon materials[D]. Jilin: Northeast Dianli University, 2020.
|
14 |
PARK M, RYU J, KIM Y, et al. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries[J]. Energy Environ Sci, 2014, 7(11): 3727-3735.
|
15 |
LEE H J, KIM H. Graphite felt coated with dopamine-derived nitrogen-doped carbon as a positive electrode for a vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2015, 162(8): A1675-A1681.
|
16 |
JEONG K I, SONG S A, KIM S S. Glucose-based carbon-coating layer on carbon felt electrodes of vanadium redox flow batteries[J]. Composites Part B: Engineering, 2019, 175: doi:10.1016/j.compositesb. 2019.107072.
|
17 |
DENG Q, TIAN Y, DING P, et al. Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries[J]. Journal of Power Sources, 2020, 450: doi:10.1016/j.jpowsour.2019.227633.
|
18 |
JIANG Y Q, CHENG G, HE Z X, et al. Biomass-derived porous graphitic carbon with excellent electrocatalytic performances for vanadium redox reactions[J]. Journal of the Electrochemical Society, 2019, 166(16): A3918-A3926.
|
19 |
LIU J, WANG Z A, WU X W, et al. Porous carbon derived from disposable shaddock peel as an excellent catalyst toward VO2 +/VO2 + couple for vanadium redox battery[J]. Journal of Power Sources, 2015, 299: 301-308.
|
20 |
ULAGANATHAN M, JAIN A, ARAVINDAN V, et al. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions[J]. Journal of Power Sources, 2015, 274: 846-850.
|
21 |
MAHARJAN M, BHATTARAI A, ULAGANATHAN M, et al. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery[J]. Journal of Power Sources, 2017, 362: 50-56.
|
22 |
MAHANTA V, RAJA M, KOTHANDARAMAN R. Activated carbon from sugarcane bagasse as a potential positive electrode catalyst for vanadium redox flow battery[J]. Materials Letters, 2019, 247: 63-66.
|
23 |
ABBAS A, ENG X E, EE N, et al. Development of reduced graphene oxide from biowaste as an electrode material for vanadium redox flow battery[J]. Journal of Energy Storage, 2021, 41: doi:10.1016/j.est.2021.102848.
|
24 |
MAHARJAN M, WAI N, VEKSHA A, et al. Sal wood sawdust derived highly mesoporous carbon as prospective electrode material for vanadium redox flow batteries[J]. Journal of Electroanalytical Chemistry, 2019, 834: 94-100.
|
25 |
JIANG Y Q, DU M C, CHENG G, et al. Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery[J]. Journal of Energy Chemistry, 2021, 59: 706-714.
|
26 |
LV Y R, LI Y H, HAN C, et al. Application of porous biomass carbon materials in vanadium redox flow battery[J]. Journal of Colloid and Interface Science, 2020, 566: 434-443.
|
27 |
CHENG D X, TIAN M R, WANG B Y, et al. One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery[J]. Journal of Colloid and Interface Science, 2020, 572: 216-226.
|
28 |
HE Z X, CHENG G, JIANG Y Q, et al. Novel 2D porous carbon nanosheet derived from biomass: Ultrahigh porosity and excellent performances toward V2+/V3+ redox reaction for vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3959-3970.
|
29 |
ZHANG Z H, ZHAO T S, BAI B F, et al. A highly active biomass-derived electrode for all vanadium redox flow batteries[J]. Electrochimica Acta, 2017, 248: 197-205.
|
30 |
RIBADENEYRA M C, GROGAN L, AU H, et al. Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries[J]. Carbon, 2020, 157: 847-856.
|
31 |
LEE M E, JANG D, LEE S, et al. Silk protein-derived carbon fabric as an electrode with high electro-catalytic activity for all-vanadium redox flow batteries[J]. Applied Surface Science, 2021, 567: doi:10.1016/j.apsusc.2021.150810.
|