储能科学与技术 ›› 2022, Vol. 11 ›› Issue (7): 2092-2102.doi: 10.19799/j.cnki.2095-4239.2022.0125
收稿日期:
2022-03-23
修回日期:
2022-04-16
出版日期:
2022-07-05
发布日期:
2022-06-29
通讯作者:
黄成德
E-mail:kelly@fullymax.com;cdhuang@tju.edu.cn
作者简介:
邓健想(1980—),女,副总工程师,现从事锂离子电池方面的研究,E-mail:kelly@fullymax.com;
基金资助:
Jianxiang DENG1(), Jinliang ZHAO2, Chengde HUANG2(
)
Received:
2022-03-23
Revised:
2022-04-16
Online:
2022-07-05
Published:
2022-06-29
Contact:
Chengde HUANG
E-mail:kelly@fullymax.com;cdhuang@tju.edu.cn
摘要:
硅材料具有较高的理论容量,被视为发展高能量锂离子电池的重要材料之一。但是硅在充放电循环中体积变化较大,会导致负极材料粉化,严重影响电池的电化学性能。黏结剂作为电极的重要组成部分,对于稳定负极结构,改善电池性能具有重要作用。总结归纳了合成类聚合物、生物类聚合物等硅基负极黏结剂的研究进展,合成类聚合物主要包括聚丙烯酸类、聚偏二氟乙烯类以及导电类黏结剂,生物类聚合物主要包括羧甲基纤维素类、海藻酸钠类以及其他生物类黏结剂。分析了选择硅基负极黏结剂的条件,包括要有极性官能团、具有一定的弹性和机械强度、化学稳定性高、最好具有一定的导电性等。极性基团可以与硅表面的羟基形成氢键,增强材料之间的黏结性能,为了更好地制约硅的体积膨胀,可以对其进行改性,使其具有一定的弹性和自愈能力;也可以选择一些导电物质,使黏结剂本身具有导电性能,可以提高电极内部导电网络的稳定性并提高活性物质的含量等。本文也为黏结剂的选择和发展提供了思路。
中图分类号:
邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102.
Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102.
表1
不同的黏结剂及其性能参数"
黏结剂 | 合成方式 | 负极材料 | 首次库仑效率/首次容量 | 循环性能 | 参考文献 |
---|---|---|---|---|---|
CA-PAA | 原位交联 | SiNPs | 89.5% | 78%/50th,0.1 C | [ |
4A-PAA | 自由基聚合 | SiO x /C | — | 89.1%/200th,0.16 A/g | [ |
PDA-PAA | 接枝 | SiNPs | 3192 mAh/g | 77.7%/100th,2 C | [ |
PAA-VTEO | 水溶液共聚 | Si/C | 89.4% | 99.17%/100th,0.1 C | [ |
PVDF-g-PtBA | 自由基聚合 | SiNPs | 78% | 84%/50th,0.05 C | [ |
碳化PVDF | 固态反应 | Si/Cu/Cu3Si/C | 82% | 1773 mAh/g/300th,2 A/g | [ |
Sn4+-PEDOT:PSS | 离子交联 | SiNPs | 3400 mAh/g | 1876.4 mAh/g/100th,8 A/g | [ |
甘油-PEDOT:PSS | 交联 | SiNPs | 85.6% | 1951.5 mAh/g/200th,0.5 A/g | [ |
PANI-PAA | 聚合 | SiNPs | — | 83%/100th,840 mA/g | [ |
PNaM | 乳液聚合 | Si/C | 88% | 75%/200th,C/3 | [ |
PPy-b-PB | 缩合 | SiNPs | 77.9% | 87.1%/200th,0.84 A/g | [ |
CMC-PDA | 聚合 | SiNPs | 87% | 80%/150th,0.2 C | [ |
CMC-PEG | 原位交联 | SiNPs | 81% | 78%/350th,0.5 C | [ |
Ni2+-Alg | 离子交联 | SiNPs | 81.8% | 83.1%/500th,0.2 C | [ |
c-Alg-g-PAAm | 双交联 | Si/C | 72.8% | 71.6%/100th,0.1 C | [ |
TA | SiNPs | 86% | 850/650th,0.5 C | [ | |
OG | SiNPs | 2067 mAh/g | 99%/50th,0.1 C | [ | |
PG-c-ECH | 化学交联 | SiNPs | 60 mAh/cm2 | 92.8%/300th,4 A/g | [ |
PAL-NaPAA | 自由基聚合 | 硅微粒 | 1914 mAh/g/100th | [ |
1 | FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): 1702737. |
2 | LI S, LIU Y M, ZHANG Y C, et al. A review of rational design and investigation of binders applied in silicon-based anodes for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229331. |
3 | LI J, WU Z, LU Y, et al. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density[j]. advanced energy materials, 2017, 7(24): 1701185. |
4 | KWON T W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47(6): 2145-2164. |
5 | YANG Y J, WU S X, ZHANG Y P, et al. Towards efficient binders for silicon based lithium-ion battery anodes[J]. Chemical Engineering Journal, 2021, 406: 126807. |
6 | ZHAO H, WEI Y, QIAO R, et al. Conductive polymer binder for high-tap-density nanosilicon material for lithium-ion battery negative electrode application[J]. Nano Letters, 2015,15(12):7927-7932. |
7 | MIRANDA A, SARANG K, GENDENSUREN B, et al. Molecular design principles for polymeric binders in silicon anodes[J]. Molecular Systems Design & Engineering, 2020, 5(4): 709-724. |
8 | KIM J M, CHO Y, GUCCINI V, et al. TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries[J]. Electrochimica Acta, 2021, 369: 137708. |
9 | MA L J, MENG J Q, PAN Y, et al. Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(8): 2003-2011. |
10 | TIAN M, CHEN X, SUN S T, et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12(5): 1121-1127. |
11 | SONG J X, ZHOU M J, YI R, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. |
12 | SUN S, HE D L, LI P, et al. Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2020, 454: 227907. |
13 | HU Y J, SHAO D, CHEN Y T, et al. A physically cross-linked hydrogen-bonded polymeric composite binder for high-performance silicon anodes[J]. ACS Applied Energy Materials, 2021, 4(10): 10886-10895. |
14 | HU X C, LIANG K, LI J B, et al. A highly crosslinked polymeric binder for silicon anode in lithium-ion batteries[J]. Materials Today Communications, 2021, 28: 102530. |
15 | DING B, HUANG X N, CAI Z F, et al. Effects of binders on electrochemical properties of high capacity silicon composite anodes[J]. Inorganic Chemistry Communications, 2020, 113: 107771. |
16 | SON J, VO T N, CHO S, et al. Acrylic random copolymer and network binders for silicon anodes in lithium-ion batteries[J]. Journal of Power Sources, 2020, 458: 228054. |
17 | YU L M, LUO Z, GONG C R, et al. Water-based binder with easy reuse characteristics for silicon/graphite anodes in lithium-ion batteries[J]. Polymer Journal, 2021, 53(8): 923-935. |
18 | 刘铁峰, 张奔, 盛欧微, 等. 硅负极黏结剂的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1446-1463. |
LIU T F, ZHANG B, SHENG O W, et al. Research progress of the binders for the silicon anode[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1446-1463. | |
19 | JIAO X X, YUAN X D, YIN J Q, et al. Multiple network binders via dual cross-linking for silicon anodes of lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 10306-10313. |
20 | WANG Y, XU H, CHEN X, et al. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries[J]. Energy Storage Materials, 2021, 38: 121-129. |
21 | LUO C, WU X F, ZHANG T, et al. A four-armed polyacrylic acid homopolymer binder with enhanced performance for SiOx/graphite anode[J]. Macromolecular Materials and Engineering, 2021, 306(1): 2000525. |
22 | ZHANG Y, WANG X Y, MA L, et al. Polydopamine blended with polyacrylic acid for silicon anode binder with high electrochemical performance[J]. Powder Technology, 2021, 388: 393-400. |
23 | LIU S J, CHENG S K, XIE M, et al. A delicately designed functional binder enabling in situ construction of 3D cross-linking robust network for high-performance Si/graphite composite anode[J]. Journal of Polymer Science, 2021: https://doi.org/10.1002/pol. 20210800. |
24 | LEE J I, KANG H, PARK K H, et al. Amphiphilic graft copolymers as a versatile binder for various electrodes of high-performance lithium-ion batteries[J]. Small, 2016, 12(23): 3119-3127. |
25 | SUH S, YOON H, PARK H, et al. Enhancing the electrochemical performance of silicon anodes for lithium-ion batteries: One-pot solid-state synthesis of Si/Cu/Cu3Si/C electrode[J]. Applied Surface Science, 2021, 567: 150868. |
26 | LIU X J, IQBAL A, ALI N, et al. Ion-cross-linking-promoted high-performance Si/PEDOT: PSS electrodes: The importance of cations' ionic potential and softness parameters[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19431-19438. |
27 | LIU X J, ZAI J T, IQBAL A, et al. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity[J]. Journal of Colloid and Interface Science, 2020, 565: 270-277. |
28 | WANG X Y, ZHANG Y, SHI Y J, et al. Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries[J]. Ionics, 2019, 25(11): 5323-5331. |
29 | ZHENG T Y, ZHANG T, DE LA FUENTE M S, et al. Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries[J]. European Polymer Journal, 2019, 114: 265-270. |
30 | YE Q Q, ZHENG P T, AO X H, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries[J]. Electrochimica Acta, 2019, 315: 58-66. |
31 | TANG R X, ZHENG X, ZHANG Y, et al. Highly adhesive and stretchable binder for silicon-based anodes in Li-ion batteries[J]. Ionics, 2020, 26(12): 5889-5896. |
32 | LEE D, PARK H, GOLIASZEWSKI A, et al. In situ cross-linked carboxymethyl cellulose-polyethylene glycol binder for improving the long-term cycle life of silicon anodes in Li ion batteries[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8123-8130. |
33 | GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269: 405-414. |
34 | GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384: 379-386. |
35 | SARANG K T, LI X Y, MIRANDA A, et al. Tannic acid as a small-molecule binder for silicon anodes[J]. ACS Applied Energy Materials, 2020, 3(7): 6985-6994. |
36 | LING H Y, HENCZ L, CHEN H, et al. Sustainable okra gum for silicon anode in lithium-ion batteries[J]. Sustainable Materials and Technologies, 2021, 28: e00283. |
37 | LI Z H, WAN Z W, ZENG X Q, et al. A robust network binder via localized linking by small molecules for high-areal-capacity silicon anodes in lithium-ion batteries[J]. Nano Energy, 2021, 79: 105430. |
38 | LUO C, DU L L, WU W, et al. Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12621-12629. |
39 | LINGAPPAN N, KONG L X, PECHT M. The significance of aqueous binders in lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111227. |
40 | WANG H L, WU B Z, WU X K, et al. Key factors for binders to enhance the electrochemical performance of silicon anodes through molecular design[J]. Small, 2022, 18(1): 2101680. |
41 | ZHAO Y M, YUE F S, LI S C, et al. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries[J]. Info Mat, 2021, 3(5): 460-501. |
42 | FAN X M, WANG Z H, CAI T, et al. An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery[J]. Carbon, 2021, 182: 749-757. |
43 | TSAI C Y, LIU Y L. 2, 2-Dimethyl-1, 3-dioxane-4, 6‑dione functionalized poly(ethylene oxide)-based polyurethanes as multi-functional binders for silicon anodes of lithium ion batteries[J]. Electrochimica Acta, 2021, 379: 138180. |
44 | CHEN H Y, ZHENG M D, CHEN Y, et al. PANI-based conductive polymer composites as water-soluble binders for nano-silicon anodes in lithium-ion batteries[J]. Ionics, 2021, 27(2): 587-597. |
45 | CARABETTA J, JOB N. Silicon-doped carbon xerogel with poly(sodium 4-styrenesulfonate) as a novel protective coating and binder[J]. Microporous and Mesoporous Materials, 2021, 310: 110622. |
46 | TANG R X, MA L, ZHANG Y, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7(9): 1992-2000. |
47 | WANG L, LIU T F, PENG X, et al. Highly stretchable conductive glue for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Functional Materials, 2018, 28(3): 1704858. |
48 | WU S, YANG Y, LIU C, et al. In-Situ Polymerized Binder: A Three-in-One Design Strategy for All-Integrated SiOx Anode with High Mass Loading in Lithium Ion Batteries[J]. ACS Energy Letters, 2021,6(1): 290-297. |
49 | HUANG J, LIU B Y, ZHANG P, et al. A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries[J]. Solid State Ionics, 2021, 373: 115807. |
50 | TASKIN O S, HUBBLE D, ZHU T Y, et al. Biomass-derived polymeric binders in silicon anodes for battery energy storage applications[J]. Green Chemistry, 2021, 23(20): 7890-7901. |
51 | HU S M, CAI Z X, HUANG T, et al. A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4311-4317. |
52 | YOU R, HAN X, ZHANG Z Q, et al. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries[J]. Ionics, 2019, 25(9): 4109-4118. |
53 | YU L B, LIU J, HE S S, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries[J]. Journal of Physics and Chemistry of Solids, 2019, 135: 109113. |
54 | GUO R N, ZHANG S L, YING H J, et al. Preparation of an amorphous cross-linked binder for silicon anodes[J]. ChemSusChem, 2019, 12(21): 4838-4845. |
55 | LIU J, ZHANG Q, WU Z Y, et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications (Cambridge, England), 2014, 50(48): 6386-6389. |
56 | KIM S, JEONG Y K, WANG Y, et al. A "sticky" mucin-inspired DNA-polysaccharide binder for silicon and silicon-graphite blended anodes in lithium-ion batteries[J]. Advanced Materials, 2018, 30(26): 1707594. |
57 | LI Z H, JI J P, WU Q, et al. A new battery process technology inspired by partially carbonized polymer binders[J]. Nano Energy, 2020, 67: 104234. |
58 | HUANG L H, LI C C. Effects of interactions between binders and different-sized silicons on dispersion homogeneity of anodes and electrochemistry of lithium-silicon batteries[J]. Journal of Power Sources, 2019, 409: 38-47. |
[1] | 张玉龙, 栾伟玲, 吴森明. 基于外特性方法的锂离子电池析锂及可逆锂回嵌定量分析[J]. 储能科学与技术, 2023, 12(2): 529-535. |
[2] | 杨帆, 和嘉睿, 陆鸣, 陆玲霞, 于淼. 基于BP-UKF算法的锂离子电池SOC估计[J]. 储能科学与技术, 2023, 12(2): 552-559. |
[3] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[4] | 朱文凯, 周星, 刘亚杰, 张涛, 宋元明. 基于递推门控循环单元神经网络的锂离子电池荷电状态实时估计方法[J]. 储能科学与技术, 2023, 12(2): 570-578. |
[5] | 王志福, 罗崴, 闫愿, 徐崧, 郝文美, 周聪林. 基于GAPSO-FNN神经网络的锂离子电池传感器故障诊断[J]. 储能科学与技术, 2023, 12(2): 602-608. |
[6] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[7] | 王放放, 冯祥明, 赵光金, 夏大伟, 胡玉霞, 陈卫华. 电化学阻抗谱识别不同化学体系退役动力锂离子电池[J]. 储能科学与技术, 2023, 12(2): 609-614. |
[8] | 韩江浩, 王晓丹, 李奇松, 李慧芳, 王睿, 许刚. 锂离子电池加速循环测试研究[J]. 储能科学与技术, 2023, 12(1): 255-262. |
[9] | 潘岳, 韩雪冰, 欧阳明高, 任华华, 刘巍, 闫月君. 锂离子电池内短路检测算法及其在实际数据中的应用[J]. 储能科学与技术, 2023, 12(1): 198-208. |
[10] | 郑瀚, 来沛霈, 田晓华, 孙卓, 张哲娟. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
[11] | 何骁龙, 石晓龙, 王子阳, 韩路豪, 姚斌. 过充、过热及其共同作用下车用三元锂离子电池热失控特性[J]. 储能科学与技术, 2023, 12(1): 218-226. |
[12] | 邓林旺, 冯天宇, 舒时伟, 郭彬, 张子峰. 锂离子电池无损析锂检测研究进展[J]. 储能科学与技术, 2023, 12(1): 263-277. |
[13] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[14] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[15] | 牛少军, 吴凯, 朱国斌, 王艳, 曲群婷, 郑洪河. 锂离子电池硅基负极循环过程中的膨胀应力[J]. 储能科学与技术, 2022, 11(9): 2989-2994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||