1 |
YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182: 464-474.
|
2 |
芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205.
|
|
RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201, 205.
|
3 |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
4 |
LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318: 164-172.
|
5 |
GAO T F, WANG Z R, CHEN S C, et al. Hazardous characteristics of charge and discharge of lithium-ion batteries under adiabatic environment and hot environment[J]. International Journal of Heat and Mass Transfer, 2019, 141: 419-431.
|
6 |
WANG Z, TONG X, LIU K, et al. Calculation methods of heat produced by a lithium-ion battery under charging-discharging condition[J]. Fire and Materials, 2018: doi: 10.1002/fam.2690.
|
7 |
JUAREZ-ROBLES D, VYAS A A, FEAR C, et al. Overdischarge and aging analytics of Li-ion cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090558.
|
8 |
MAO N, WANG Z R, CHUNG Y H, et al. Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 163: doi: 10.1016/j.applthermaleng.2019.114147.
|
9 |
SHIM K H, LEE S K, KANG B S, et al. Investigation on blanking of thin sheet metal using the ductile fracture criterion and its experimental verification[J]. Journal of Materials Processing Technology, 2004, 155/156: 1935-1942.
|
10 |
张青松, 刘添添, 赵洋. 受限空间环境压力对三元锂离子电池热失控影响[J]. 中国安全生产科学技术, 2021, 17(6): 36-40.
|
|
ZHANG Q S, LIU T T, ZHAO Y. Influence of environmental pressure in confined space on thermal runaway of ternary lithium ion battery[J]. Journal of Safety Science and Technology, 2021, 17(6): 36-40.
|
11 |
BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): doi: 10.1149/1.3515880.
|
12 |
MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi: 10.1016/j.ijheatmasstransfer.2019.119178.
|
13 |
张青松, 程相静, 白伟. 细水雾添加剂抑制锂电池火灾最佳浓度研究[J]. 中国安全生产科学技术, 2018, 14(5): 43-50.
|
|
ZHANG Q S, CHENG X J, BAI W. Study on optimum concentration of additives in water mist for suppression of lithium battery fire[J]. Journal of Safety Science and Technology, 2018, 14(5): 43-50.
|
14 |
张青松, 姜乃文, 罗星娜, 等. 锂离子电池热失控多米诺效应实证研究[J]. 科学技术与工程, 2016, 16(10): 252-256.
|
|
ZHANG Q S, JIANG N W, LUO X N, et al. Lithium-ion battery thermal runaway domino effect experimental verification research[J]. Science Technology and Engineering, 2016, 16(10): 252-256.
|
15 |
FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273.
|
16 |
LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523.
|
17 |
胡棋威. 锂离子电池热失控传播特性及阻断技术研究[D]. 北京: 中国舰船研究院, 2015.
|
|
HU Q W. Study on lithium-ion batteries thermal runaway propagation characteristics and blocking techniques[D]. Beijing: China Ship Research and Development Academy, 2015.
|
18 |
GAO S, LU L G, OUYANG M, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the Electrochemical Society, 2019, 166(10): A2065-A2073.
|