1 |
尹涛, 郑莉莉, 贾隆舟, 等. 锂离子电池浮充电研究综述[J]. 储能科学与技术, 2021, 10(1): 310-318.
|
|
YIN T, ZHENG L L, JIA L Z, et al. Overview of research on float charging for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 310-318.
|
2 |
WEI Z F, ZHONG G B, SU W, et al. Float-charging characteristics of lithium iron phosphate battery based on direct-current power supply system in substation[J]. Journal of Energy Engineering, 2016, 142(1): doi:10.1061/(asce)ey.1943-7897.0000273.
|
3 |
YI S Z, WANG B, CHEN Z A, et al. The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries[J]. Ionics, 2019, 25(5): 2139-2145.
|
4 |
赵伟, 肖祥, 梅成林. 磷酸铁锂/石墨电池浮充工况下的失效机理研究[J]. 电源技术, 2020, 44(4): 492-495.
|
|
ZHAO W, XIAO X, MEI C L. Study on failure mechanism of LiFePO4/graphite battery under floating charge[J]. Chinese Journal of Power Sources, 2020, 44(4): 492-495.
|
5 |
TAKAHASHI M, SHODAI T. Float charging performance of lithium ion batteries with LiFePO4 cathode[J]. Electrochemistry, 2010, 78(5): 342-344.
|
6 |
TSUJIKAWA T, YABUTA K, MATSUSHITA T, et al. A study on the cause of deterioration in float-charged lithium-ion batteries using LiMn2O4 as a cathode active material[J]. Journal of the Electrochemical Society, 2011, 158(3): A322.
|
7 |
李慧芳, 高俊奎, 李飞, 等. 锂离子电池浮充测试的鼓胀原因分析及改善[J]. 电源技术, 2013, 37(12): 2123-2126.
|
|
LI H F, GAO J K, LI F, et al. Study on cause of swelling in float-charged lithium ion batteries[J]. Chinese Journal of Power Sources, 2013, 37(12): 2123-2126.
|
8 |
孔令丽, 张克军, 夏晓萌, 等. 高电压锂离子电池高温浮充性能影响因素分析与改善[J]. 储能科学与技术, 2019, 8(6): 1165-1170.
|
|
KONG L L, ZHANG K J, XIA X M, et al. Analysis and improvement of high temperature floating charge performance for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1165-1170.
|
9 |
王栋, 郑莉莉, 李希超, 等. 三元软包动力锂电池热安全性[J]. 储能科学与技术, 2020, 9(5): 1517-1525.
|
|
WANG D, ZHENG L L, LI X C, et al. Thermal safety of ternary soft pack power lithium battery[J]. Energy Storage Science and Technology, 2020, 9(5): 1517-1525.
|
10 |
YE J N, CHEN H D, WANG Q S, et al. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions[J]. Applied Energy, 2016, 182: 464-474.
|
11 |
FERNANDES Y, BRY A, DE PERSIS S. Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery[J]. Journal of Power Sources, 2018, 389: 106-119.
|
12 |
刘亚利, 吴娇杨, 李泓. 锂离子电池基础科学问题(Ⅸ)——非水液体电解质材料[J]. 储能科学与技术, 2014, 3(3): 262-282.
|
|
LIU Y L, WU J Y, LI H. Fundamental scientific aspects of lithium ion batteries(Ⅸ)—Nonaqueous electrolyte materials[J]. Energy Storage Science and Technology, 2014, 3(3): 262-282.
|
13 |
LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420.
|
14 |
WANG C J, ZHU Y L, GAO F, et al. Thermal runaway behavior and features of LiFePO4/graphite aged batteries under overcharge[J]. International Journal of Energy Research, 2020, 44(7): 5477-5487.
|
15 |
陈伟峰. 软包装锂离子电池产气机理研究和预测[D]. 北京: 清华大学, 2012.
|
|
CHEN W F. Gas generation mechanism and reliability projection modeling of soft pack lithium-ion battery[D]. Beijing: Tsinghua University, 2012.
|