1 |
INUI Y, KOBAYASHI Y, WATANABE Y, et al. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries[J]. Energy Conversion and Management, 2007, 48(7): 2103-2109.
|
2 |
GRANDJEAN T, BARAI A, HOSSEINZADEH E, et al. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management[J]. Journal of Power Sources, 2017, 359: 215-225.
|
3 |
SHARMA G, SOOD V K, ALAM M S, et al. Comparison of common DC and AC bus architectures for EV fast charging stations and impact on power quality[J]. eTransportation, 2020, 5: doi: 10.1016/j.etran.2020.100066.
|
4 |
HALES A, PROSSER R, BRAVO DIAZ L, et al. The cell cooling coefficient as a design tool to optimise thermal management of lithium-ion cells in battery packs[J]. eTransportation, 2020, 6: doi: 10.1016/j.etran.2020.100089.
|
5 |
FLECKENSTEIN M, BOHLEN O, ROSCHER M A, et al. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients[J]. Journal of Power Sources, 2011, 196(10): 4769-4778.
|
6 |
GUO C L, ZHU K J, CHEN C C, et al. Characteristics and effect laws of the large-scale electric Vehicle's charging load[J]. eTransportation, 2020, 3: doi: 10.1016/j.etran.2020.100049.
|
7 |
孙占宇. 基于电化学模型的车用锂离子电池安全快速充电算法[J]. 汽车安全与节能学报, 2017, 8(1): 97-101.
|
|
SUN Z Y. Safe fast charging algorithm of lithium ion battery based on an electrochemical model[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 97-101.
|
8 |
DIXON J, BELL K. Electric vehicles: Battery capacity, charger power, access to charging and the impacts on distribution networks[J]. eTransportation, 2020, 4: doi: 10.1016/j.etran.2020.100059.
|
9 |
彭敏, 申文静, 罗兆东. 层叠式锂离子电池二维热模型研究[J]. 电源技术, 2018, 42(9): 1312-1315.
|
|
PENG M, SHEN W J, LUO Z D. Two-dimensional thermal modeling for laminated lithium ion battery[J]. Chinese Journal of Power Sources, 2018, 42(9): 1312-1315.
|
10 |
STURM J, RHEINFELD A, ZILBERMAN I, et al. Modeling and simulation of inhomogeneities in a 18650 nickel-rich, silicon-graphite lithium-ion cell during fast charging[J]. Journal of Power Sources, 2019, 412: 204-223.
|
11 |
ZHAO W, LUO G, WANG C Y. Effect of tab design on large-format Li-ion cell performance[J]. Journal of Power Sources, 2014, 257: 70-79.
|
12 |
SAMBA A, OMAR N, GUALOUS H, et al. Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling[J]. Electrochimica Acta, 2014, 147: 319-329.
|
13 |
FEAR C, PARMANANDA M, KABRA V, et al. Mechanistic underpinnings of thermal gradient induced inhomogeneity in lithium plating[J]. Energy Storage Materials, 2021, 35: 500-511.
|
14 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
15 |
DOYLE M, NEWMAN J, GOZDZ A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890-1903.
|
16 |
TANG S Q, WANG Z X, GUO H J, et al. Systematic parameter acquisition method for electrochemical model of 4.35 V LiCoO2 batteries[J]. Solid State Ionics, 2019, 343: doi: 10.1016/j.ssi.2019.115083.
|
17 |
YE Y H, SHI Y X, CAI N S, et al. Electro-thermal modeling and experimental validation for lithium ion battery[J]. Journal of Power Sources, 2012, 199: 227-238.
|
18 |
李斌, 常国峰, 林春景, 等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2): 378-381.
|
|
LI B, CHANG G F, LIN C J, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2): 378-381.
|
19 |
REN D S, SMITH K, GUO D X, et al. Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model[J]. Journal of the Electrochemical Society, 2018, 165(10): doi: 10.1149/2.0661810jes.
|