1 |
HUANG X J, MENG Q B, CHEN H, et al. Renewable energy conversion, storage, and efficient utilization[J]. Science, 2018, 360(6389): 47-51.
|
2 |
DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337.
|
3 |
LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
|
4 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
5 |
HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614.
|
6 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 1-11.
|
7 |
陆雅翔, 赵成龙, 容晓晖, 等. 室温钠离子电池材料及器件研究进展[J]. 物理学报, 2018, 67(12): doi: 10.7498/aps.67.20180847.
|
|
LU Y X, ZHAO C L, RONG X H, et al. Research progress of materials and devices for room-temperature Na-ion batteries[J]. Acta Physica Sinica, 2018, 67(12): doi: 10.7498/aps.67.20180847.
|
8 |
PAN H L, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): doi: 10.1039/c3ee40847g.
|
9 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
|
10 |
JACHE B, ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-10173.
|
11 |
LIU Y Y, MERINOV B V, GODDARD W A. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): 3735-3739.
|
12 |
SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703268.
|
13 |
JIAN Z L, BOMMIER C, LUO L L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials, 2017, 29(5): 2314-2320.
|
14 |
LI Y M, HU Y S, QI X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197.
|
15 |
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4): doi: 10.1016/j.dld.2004.05.016.
|
16 |
YAMAMOTO H, MURATSUBAKI S, KUBOTA K, et al. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 16844-16848.
|
17 |
LUO W, BOMMIER C, JIAN Z L, et al. Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent[J]. ACS Applied Materials & Interfaces, 2015, 7(4): 2626-2631.
|
18 |
LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): doi: 10.1002/aenm.201800108.
|
19 |
ZHANG S W, LV W, LUO C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3: 18-23.
|
20 |
STEVENS D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society, 2001, 148(8): doi: 10.1149/1.1379565.
|
21 |
QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201700403.
|
22 |
BOMMIER C, SURTA T W, DOLGOS M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters, 2015, 15(9): 5888-5892.
|
23 |
STRATFORD J M, ALLAN P K, PECHER O, et al. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes[J]. Chemical Communications (Cambridge, England), 2016, 52(84): 12430-12433.
|
24 |
MORIKAWA Y, NISHIMURA S I, HASHIMOTO R I, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201903176.
|
25 |
WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
|
26 |
LI Q, LIU X S, TAO Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, doi: 10.1093/nsr/nwac084.
|
27 |
AU H, ALPTEKIN H, JENSEN A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science, 2020, 13(10): 3469-3479.
|
28 |
ZHANG B, GHIMBEU C M, LABERTY C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6(1): doi: 10.1002/aenm.201501588.
|
29 |
ZHENG Y H, LU Y X, QI X G, et al. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode[J]. Energy Storage Materials, 2019, 18: 269-279.
|
30 |
LI Y M, MU L Q, HU Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 2: 139-145.
|
31 |
WANG Z H, FENG X, BAI Y, et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): doi: 10.1002/aenm.202003854.
|
32 |
MENG Q S, LU Y X, DING F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters, 2019, 4(11): 2608-2612.
|