1 |
CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: A critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.
|
2 |
GUO C B, PAN L H, ZHANG K N, et al. Comparison of compressed air energy storage process in aquifers and Caverns based on the Huntorf CAES plant[J]. Applied Energy, 2016, 181: 342-356.
|
3 |
HYDROSTOR. Hydrostor and NRStor announce completion of world's first commercial advanced-CAES facility[EB/OL]. [2022-02-21]. https://www.hydrostor.ca/news-press-1/.
|
4 |
HYDROSTOR. Hydrostor files application for certification for 400 MW x 8 hour (3,200 MWh) pecho energy storage center[EB/OL]. [2022-02-21]. https://www.hydrostor.ca/hydrostor-files-application-for-certification-for-400-mw-x-8-hour-3200-mwh-pecho-energy-storage-center/.
|
5 |
HIGHVIEW. Highview enlasa developing 50 MW/500 MWh liquid air energy storage facility in the atacama region of chile[EB/OL]. [2022-02-21]. https://highviewpower.com/news_announcement/highview-enlasa-developing-50 mw-500 mwh-liquid-air-energy-storage-facility-in-the-atacama-region-of-chile/.
|
6 |
BOLLINGER B. Demonstration of isothermal compressed air energy storage to support renewable energy production[R]. Office of Scientific and Technical Information (OSTI), 2015.
|
7 |
中国科学院工程热物理研究所. 山东肥城国际首套盐穴先进压缩空气储能国家示范电站正式并网发电[EB/OL]. [2022-02-21]. http://www.iet.cas.cn/news/zh/202109/t2021 0923_6214054.html.
|
|
Institute of Engineering Thermophysics of Chinese Academy of Sciences. National demonstration salt cavern advanced compressed air storage power plant is officially connected to the grid at Shandong Feicheng. [EB/OL]. [2022-02-21]. http://www.iet.cas.cn/news/zh/202109/t2021 0923_6214054.html.
|
8 |
中国科学院工程热物理研究所. 国际首套百兆瓦先进压缩空气储能国家示范项目顺利并网[EB/OL]. [2022-02-21]. https://www.cas.cn/syky/202201/t20220102_4820551.shtml.
|
|
Institute of Engineering Thermophysics of Chinese Academy of Sciences. The first hundred-megawatt advanced compressed air energy storage national demonstration project was successfully connected to the grid [EB/OL]. [2022-02-21]. https://www.cas.cn/syky/202201/t202 20102_4820551.s html.
|
9 |
RAUGEI M, LECCISI E, FTHENAKIS V M. What are the energy and environmental impacts of adding battery storage to photovoltaics? A generalized life cycle assessment[J]. Energy Technology, 2020, 8(11): doi:10.1002/ente.201901146.[LinkOut]
|
10 |
STERNBERG A, BARDOW A. Power-to-What?—Environmental assessment of energy storage systems[J]. Energy & Environmental Science, 2015, 8(2): 389-400.
|
11 |
STOUGIE L, DEL SANTO G, INNOCENTI G, et al. Multi-dimensional life cycle assessment of decentralised energy storage systems[J]. Energy, 2019, 182: 535-543.
|
12 |
ALSHAFI M, BICER Y. Life cycle assessment of compressed air, vanadium redox flow battery, and molten salt systems for renewable energy storage[J]. Energy Reports, 2021, 7: 7090-7105.
|
13 |
KAPILA S, ONI A O, GEMECHU E D, et al. Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems[J]. Energy, 2019, 170: 592-603.
|
14 |
DENHOLM P, KULCINSKI G L. Life cycle energy requirements and greenhouse gas emissions from large scale energy storage systems[J]. Energy Conversion and Management, 2004, 45(13/14): 2153-2172.
|
15 |
BOUMAN E A, OBERG M M, HERTWICH E G. Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)[J]. Energy, 2016, 95: 91-98.
|
16 |
LI R X, ZHANG H R, CHEN H, et al. Hybrid techno-economic and environmental assessment of adiabatic compressed air energy storage system in China-Situation[J]. Applied Thermal Engineering, 2021, 186: doi: 10.1016/j.applthermaleng.2020.116443.
|
17 |
杨东, 刘晶茹, 杨建新, 等. 基于生命周期评价的风力发电机碳足迹分析[J]. 环境科学学报, 2015, 35(3): 927-934.
|
|
YANG D, LIU J R, YANG J X, et al. Carbon footprint of wind turbine by life cycle assessment[J]. Acta Scientiae Circumstantiae, 2015, 35(3): 927-934.
|
18 |
ARVANITOYANNIS I S. ISO 14040: life cycle assessment (LCA)—principles and guidelines[M]//Waste Management for the Food Industries. Amsterdam: Elsevier, 2008: 97-132.
|
19 |
Huibregts M, Steinmann Z, Elshout P, et al. A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level[J]. National Institute for Public Health and the Environment, 2016:doi:10.1007/s11367-016-1246-y.
|
20 |
中华人民共和国住房和城乡建设部. 机械工业工程节能设计规范: GB 50910—2013[S]. 北京: 中国计划出版社, 2014.
|
|
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of energy conservation of mechanical industrial engineering: GB 50910—2013[S]. Beijing: China Planning Press, 2014.
|
21 |
机械电子工业部第二设计研究院. 通用机械节能设计技术规定: JBJ 20—1990[S]. 北京:机械工业出版社,1991.
|
|
Second Design and Research Institute of Ministry of Mechatronics Industry. Technical provisions for energy-saving design of general machinery: JBJ 20-1990[S]. Beijing:China Machine Press,1991.
|
22 |
王亮. 基于多种清单分析方法的压缩机转子生命周期评价[D]. 大连: 大连理工大学, 2017.
|
|
WANG L. Life cycle assessment of compressor rotors based on multiple inventory analysis methods[D]. Dalian: Dalian University of Technology, 2017.
|
23 |
SHI J L, LI T, ZHANG H C, et al. Energy consummation and environmental emissions assessment of a refrigeration compressor based on life cycle assessment methodology[J]. The International Journal of Life Cycle Assessment, 2015, 20(7): 947-956.
|