1 |
AL SHAQSI A Z, SOPIAN K, AL-HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306.
|
2 |
何文胜, 赵金元. 国内外动力电池地下装载机现状与发展趋势[J]. 有色设备, 2020, 34(4): 87-92.
|
|
HE W S, ZHAO J Y. The future trend and present state of battery LHD[J]. Nonferrous Metallurgical Equipment, 2020, 34(4): 87-92.
|
3 |
李伟峰, 马素花, 沈晓冬, 等. 面向大规模电网储能的钠基电池研究进展[J]. 电源技术, 2015, 39(1): 213-216.
|
|
LI W F, MA S H, SHEN X D, et al. Advances of sodium based batteries for large-scale energy storage of power grid[J]. Chinese Journal of Power Sources, 2015, 39(1): 213-216.
|
4 |
HOSSEINIFAR M, PETRIC A. Effect of high charge rate on cycle life of ZEBRA (Na/NiCl2) cells[J]. Journal of the Electrochemical Society, 2016, 163(7): A1226-A1231.
|
5 |
徐海, 郭朝有, 曾凡明, 等. 钠-氯化镍电池应用于潜艇动力系统的可行性分析[J]. 舰船科学技术, 2014, 36(11): 98-101.
|
|
XU H, GUO C Y, ZENG F M, et al. Feasibility analysis of sodium-nickel chloride battery used in submarine power system[J]. Ship Science and Technology, 2014, 36(11): 98-101.
|
6 |
LU X C, LEMMON J P, SPRENKLE V, et al. Sodium-beta alumina batteries: Status and challenges[J]. JOM, 2010, 62(9): 31-36.
|
7 |
DAMBONE SESSA S, CRUGNOLA G, TODESCHINI M, et al. Sodium nickel chloride battery steady-state regime model for stationary electrical energy storage[J]. Journal of Energy Storage, 2016, 6: 105-115.
|
8 |
DUSTMANN C H. Advances in ZEBRA batteries[J]. Journal of Power Sources, 2004, 127(1/2): 85-92.
|
9 |
SUDWORTH J L. The sodium/nickel chloride (ZEBRA) battery[J]. Journal of Power Sources, 2001, 100(1/2): 149-163.
|
10 |
GRAEBER G, LANDMANN D, SVALUTO-FERRO E, et al. Rational cathode design for high-power sodium-metal chloride batteries[J]. Advanced Functional Materials, 2021, 31(46): 2106367.
|
11 |
ROCK S E, SIMPSON D E, TURK M C, et al. Nucleation controlled mechanism of cathode discharge in a Ni/NiCl2Molten salt half-cell battery[J]. Journal of the Electrochemical Society, 2016, 163(10): A2282-A2292.
|
12 |
QIAN K, HUANG B H, RAN A H, et al. State-of-health (SOH) evaluation on lithium-ion battery by simulating the voltage relaxation curves[J]. Electrochimica Acta, 2019, 303: 183-191.
|
13 |
PEI L, WANG T S, LU R G, et al. Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries[J]. Journal of Power Sources, 2014, 253: 412-418.
|
14 |
PARK M, ZHANG X C, CHUNG M, et al. A review of conduction phenomena in Li-ion batteries[J]. Journal of Power Sources, 2010, 195(24): 7904-7929.
|
15 |
WEN Z Y, CAO J D, GU Z H, et al. Research on sodium sulfur battery for energy storage[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1697-1701.
|
16 |
胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望——提高电池安全性的材料与结构设计[J]. 储能科学与技术, 2021, 10(3): 781-799.
|
|
HU Y Y, WU X W, WEN Z Y. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety[J]. Energy Storage Science and Technology, 2021, 10(3): 781-799.
|
17 |
WEN Z Y, HU Y Y, WU X W, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018.
|
18 |
WEIDMAN P D, AHN D, RAJ R. Diffusive relaxation of Li in particles of silicon oxycarbide measured by galvanostatic titrations[J]. Journal of Power Sources, 2014, 249: 219-230.
|
19 |
HU Y Y, ZHA W P, LI Y P, et al. Understanding the influencing factors of porous cathode contributions to the impedance of a sodium-nickel chloride (ZEBRA) battery[J]. Functional Materials Letters, 2021, 14(3): 2141002.
|
20 |
LI G S, LU X C, KIM J Y, et al. Cell degradation of a Na-NiCl2 (ZEBRA) battery[J]. Journal of Materials Chemistry A, 2013, 1(47): 14935.
|
21 |
AO X, WEN Z Y, HU Y Y, et al. Enhanced cycle performance of a Na/NiCl2 battery based on Ni particles encapsulated with Ni3S2 layer[J]. Journal of Power Sources, 2017, 340: 411-418.
|