1 |
唐伟. “碳中和”背景下“十四五”能源电力发展趋势分析[J]. 油气与新能源, 2021, 33(2): 13-17.
|
|
TANG W. “carbon neutrality” aimed electric power development in the 14th five-year[J]. Petroleum and New Energy, 2021, 33(2): 13-17.
|
2 |
曾鸣, 张硕. “十四五”电力规划的综合能源发展探析[J]. 中国电力企业管理, 2020(13): 26-28.
|
|
ZENG M, ZHANG S. Analysis of comprehensive energy development in the “14th five year plan” of electric power [J]. China Power Enterprise Management, 2020(13): 26-28.
|
3 |
文贤馗, 张世海, 王锁斌. 压缩空气储能技术及示范工程综述[J]. 应用能源技术, 2018(3): 43-48.
|
|
WEN X K, ZHANG S H, WANG S B. Summary of compressed air energy storage technology and demonstration projects[J]. Applied Energy Technology, 2018(3): 43-48.
|
4 |
文贤馗, 张世海, 邓彤天, 等. 大容量电力储能调峰调频性能综述[J]. 发电技术, 2018, 39(6): 487-492.
|
|
WEN X K, ZHANG S H, DENG T T, et al. A summary of large capacity power energy storage peak regulation and frequency adjustment performance[J]. Power Generation Technology, 2018, 39(6): 487-492.
|
5 |
LI S M, WANG J, LIU Q, et al. Analysis of status of photovoltaic and wind power abandoned in China[J]. Journal of Power and Energy Engineering, 2017, 5(1): 91-100.
|
6 |
TANNEBERGER T, SCHIMEK S, PASCHEREIT C O, et al. Combustion efficiency measurements and burner characterization in a hydrogen-oxyfuel combustor[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29752-29764.
|
7 |
HAMDY S, MOROSUK T, TSATSARONIS G. Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system[J]. Energy, 2019, 183: 812-824.
|
8 |
KRAWCZYK P, SZABŁOWSKI Ł, KARELLAS S, et al. Comparative thermodynamic analysis of compressed air and liquid air energy storage systems[J]. Energy, 2018, 142: 46-54.
|
9 |
GUO H, XU Y J, ZHANG X J, et al. Transmission characteristics of exergy for novel compressed air energy storage systems-from compression and expansion sections to the whole system[J]. Energy, 2020, 193: doi: 10.1016/j.energy.2019.116798.
|
10 |
REN Y, YAO X H, LIU D, et al. Optimal design of hydro-wind-PV multi-energy complementary systems considering smooth power output[J]. Sustainable Energy Technologies and Assessments, 2022, 50: doi: 10.1016/j.seta.2021.101832.
|
11 |
GAO Z Z, JI W, GUO L N, et al. Thermo-economic analysis of the integrated bidirectional peak shaving system consisted by liquid air energy storage and combined cycle power plant[J]. Energy Conversion and Management, 2021, 234: doi: 10.1016/j.enconman.2021.113945.
|
12 |
郎立. 液化天然气冷能回收利用分析[J]. 石化技术, 2019, 26(12): 1, 9.
|
|
LANG L. Analysis of cold energy recovery and utilization of liquefied natural gas(LNG)[J]. Petrochemical Industry Technology, 2019, 26(12): 1, 9.
|
13 |
巩志超, 马凯. LNG冷能利用方式及发展前景[J]. 中国石油石化, 2017(5): 161-162.
|
|
GONG Z C, MA K. LNG cold energy utilization mode and development prospect [J]. China Petrochem, 2017(5): 161-162.
|
14 |
何青, 王立健, 刘文毅. 深冷液化空气储能系统的热力学建模及㶲分析[J]. 华中科技大学学报(自然科学版), 2018, 46(10): 127-132.
|
|
HE Q, WANG L J, LIU W Y. Thermodynamic model and exergy analysis of cryogenic liquefied air energy storage system[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(10): 127-132.
|
15 |
TAFONE A, ROMAGNOLI A, BORRI E, et al. New parametric performance maps for a novel sizing and selection methodology of a liquid air energy storage system[J]. Applied Energy, 2019, 250: 1641-1656.
|
16 |
AMEEL B, T'JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air Rankine cycle[J]. Applied Thermal Engineering, 2013, 52(1): 130-140.
|
17 |
DUTTA A, KARIMI I A, FAROOQ S. Economic feasibility of power generation by recovering cold energy during LNG (liquefied natural gas) regasification[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10687-10695.
|
18 |
KALAN A S, GHIASIRAD H, SARAY R K, et al. Thermo-economic evaluation and multi-objective optimization of a waste heat driven combined cooling and power system based on a modified Kalina cycle[J]. Energy Conversion and Management, 2021, 247: doi: 10.1016/j.enconman.2021.114723.
|
19 |
SHE X H, PENG X D, ZHANG T T, et al. Preliminary study of liquid air energy storage integrated with LNG cold recovery[J]. Energy Procedia, 2019, 158: 4903-4908.
|
20 |
苏要港, 吴晓南, 廖柏睿, 等. 耦合LNG冷能及ORC的新型液化空气储能系统分析[J]. 储能科学与技术, 2022, 11(6): 1996-2006.
|
|
SU Y G, WU X N, LIAO B R, et al. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC[J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006.
|
21 |
李盼, 杨晨, 陈雯, 等. 压缩空气储能系统动态特性及其调节系统[J]. 中国电机工程学报, 2020, 40(7): 2295-2305, 2408.
|
|
LI P, YANG C, CHEN W, et al. Dynamic characteristics of compressed air energy storage system and the regulation system[J]. Proceedings of the CSEE, 2020, 40(7): 2295-2305, 2408.
|
22 |
冯庭勇, 钟晶亮, 文贤馗, 等. 先进绝热压缩空气储能发电系统参与调频辅助服务控制优化方法[J]. 热力发电, 2022, 51(5): 136-141.
|
|
FENG T Y, ZHONG J L, WEN X K, et al. Optimization method of AA-CAES power generation system participating in frequency modulation auxiliary service control[J]. Thermal Power Generation, 2022, 51(5): 136-141.
|
23 |
杨德州, 贾春荣, 迟昆, 等. 深冷液化空气储能系统热力学建模与效率分析[J]. 电力电容器与无功补偿, 2020, 41(6): 185-190.
|
|
YANG D Z, JIA C R, CHI K, et al. Thermodynamic modeling and efficiency analysis of liquid air energy storage[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(6): 185-190.
|
24 |
郭立君, 何川. 泵与风机[M]. 3版. 北京: 中国电力出版社, 2004: 53-58.
|
|
GUO L J, HE C. Pumps and Fans[M]. Beijing: China Electric Power Press, 2004: 53-58.
|