储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3131-3144.doi: 10.19799/j.cnki.2095-4239.2023.0261

• 储能系统与工程 • 上一篇    下一篇

飞轮储能系统电机转子散热研究进展

焦渊远1(), 王艺斐1, 戴兴建1(), 张华良1, 陈海生1,2   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.中国科学院大学,北京 100049
  • 收稿日期:2023-04-25 修回日期:2023-05-31 出版日期:2023-10-05 发布日期:2023-10-09
  • 通讯作者: 戴兴建 E-mail:jiaoyuanyuan@iet.cn;daixingjian@iet.cn
  • 作者简介:焦渊远(1999—),男,硕士研究生,研究方向为飞轮储能系统,E-mail:jiaoyuanyuan@iet.cn
  • 基金资助:
    内蒙古重大科技专项(2020ZD0017);中国科学院先导专项(XDA21070303)

Overview of the motor-generator rotor cooling system in a flywheel energy storage system

Yuanyuan JIAO1(), Yifei WANG1, Xingjian DAI1(), Hualiang ZHANG1, Haisheng CHEN1,2   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    2.Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-04-25 Revised:2023-05-31 Online:2023-10-05 Published:2023-10-09
  • Contact: Xingjian DAI E-mail:jiaoyuanyuan@iet.cn;daixingjian@iet.cn

摘要:

电机是飞轮储能系统实现电能-动能转换的关键部件,其小体积、大功率的设计特点以及真空运行环境导致电机转子温升问题突出,常规的定子水套冷却已不能满足高功率密度电机转子的散热降温需求。本文首先阐述了飞轮储能电机转子发热的原因及危害,分析了转子涡流损耗、电机温度场的计算方法。回顾了飞轮电机转子被动冷却、主动冷却的研究进展,其中被动冷却包括热辐射与导热,主动冷却包括空心轴内通流冷却与热管冷却,并评估了各种方法的飞轮储能适用性。综合分析表明,强化电机定、转子内部绝缘材料导热以及增强热辐射可以一定程度上防止电机内部热量积聚,降低电机的温度梯度;热管易于安装、集成度高、传热性能优异,但其随轴的旋转传热缺乏验证;空心轴内流冷却技术成熟度高、设计制造简单、传热效果好,可作为高功率密度飞轮电机转子冷却的首选方案。针对MW飞轮储能电机转子散热难题,提出了中空轴内通流冷却的新方案。

关键词: 飞轮储能系统, 电机转子, 散热系统, 空心轴通流冷却, 热管

Abstract:

Motor-generators (MGs) for converting electric energy into kinetic energy are the key components of flywheel energy storage systems (FESSs). However, the compact diameters, high-power design features of MGs, and vacuum operating settings of FESSs cause the MG rotor's temperature to increase, leading typical cooling water jackets to fail in meeting the heat dissipation needs of high-power density MG rotors. This study expands upon the causes of and harm generated by the heat production of FESS MG rotors and analyzes the calculation methods for the rotor eddy current losses and MG temperature fields. Moreover, this work also presents research progress on the passive and active cooling of MG rotors. Note that passive cooling includes heat radiation and conduction, while active cooling include shollow shaft fluid and heat pipe cooling. The applicability of the methods provided in the FESS is evaluated. The heat buildup can be preventedup to a point. The temperature gradients inside MGs can also be lowered by improving the heat conduction of the insulation materials inside the stators and rotor sand enhancing thermal radiation. Heat pipes have a simple installation, high integration, and excellent heat transfer performance. Unfortunately, the heat transmission effects cannot be proven while the shafts spin. The hollow shaft fluid cooling technology has avery mature, straight forward design and construction and a good heat transfer effect; hence, it can be used as the first choice for the rotor cooling of MGs with high-power density flywheels. Finally, a fresh hollow shaft flow cooling system is put forth to solve the heat dissipation issue in MW FESS MG rotor cooling.

Key words: flywheel energy storage system, motor/generator rotor, heat dissipation system, hollow shaft fluidcooling, heat pipe

中图分类号: