储能科学与技术 ›› 2023, Vol. 12 ›› Issue (10): 3181-3190.doi: 10.19799/j.cnki.2095-4239.2023.0369

• 储能测试与评价 • 上一篇    下一篇

基于SDAE-Transformer-ECA网络的锂电池剩余使用寿命预测

宋兴海1(), 张小乾1, 梁惠施2(), 史梓男2, 李棉刚2, 周奎2, 贡晓旭2   

  1. 1.西南科技大学,四川 绵阳 621010
    2.清华四川能源互联网研究院,四川 成都 610213
  • 收稿日期:2023-05-29 修回日期:2023-06-05 出版日期:2023-10-05 发布日期:2023-10-09
  • 通讯作者: 梁惠施 E-mail:1293857067@qq.com;lianghuishi@tinghua-eiri.org
  • 作者简介:宋兴海(1998—),男,硕士研究生,主要研究方向电池安全管理、机器学习,E-mail:1293857067@qq.com
  • 基金资助:
    国家自然科学基金面上项目(62102331);四川省自然科学基金项目(2022NSFSC0839)

Predicting the remaining service life of lithium batteries based on the SDAE-transformer-ECA network

Xinghai SONG1(), Xiaoqian ZHANG1, Huishi LIANG2(), Zinan SHI2, Miangang LI2, Kui ZHOU2, Xiaoxu GONG2   

  1. 1.Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
    2.Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, Sichuan, China
  • Received:2023-05-29 Revised:2023-06-05 Online:2023-10-05 Published:2023-10-09
  • Contact: Huishi LIANG E-mail:1293857067@qq.com;lianghuishi@tinghua-eiri.org

摘要:

锂离子电池剩余使用寿命(remaining useful life,RUL)的准确预测对于提高电池使用寿命、降低异常事故的概率,起着至关重要的作用。本文结合堆叠噪声自编码器(stacked denoising auto encoder,SDAE)和变压器(transformer)的优势,提出了一种结合高效通道注意力(efficient channel attention,ECA)的SDAE-Transformer-ECA的锂离子电池RUL预测网络。首先,针对电池在使用过程中存在的容量再生现象和数据集采集误差等噪声污染,利用SDAE对输入数据进行重构去噪、提取特征。然后,通过Transformer网络对重构数据进行序列信息的捕获。最后,结合ECA网络对捕获信息进行跨通道整合和交互,从而实现锂离子电池的RUL的预测。本文先基于美国马里兰大学先进生命周期工程中心(Center for Advanced Life Cycle Engineering,CALCE)提供的电池容量数据集进行实验验证,实验证明本文模型的各项误差都较低,具有较高的准确性,且与次优算法Bi-LSTM相比,平均RE相对降低了62.67%,平均MAE相对降低了40.68%,平均RMSE相对降低了34.33%。再使用美国航空航天局(National Aeronautics and Space Administration,NASA)提供的B0007号电池容量数据集进行泛化性验证,实验得到的RE、MAE和RMSE结果分别是1.98%、3.12%和4.16%,与RNN、LSTM、GRU和Bi-LSTM等现有算法相比,本文模型预测准确性更高,证明了该模型的泛化性。

关键词: 锂离子电池, SDAE, Transformer, 注意力机制, 剩余使用寿命预测

Abstract:

The accurate prediction of the remaining useful life (RUL) of lithium-ion batteries plays a crucial role in improving the battery life and reducing the probability of accidents. This study combines the advantages of a stacked denoising autoencoder (SDAE) and a transformer to propose a lithium-ion battery RUL prediction network that combines the SDAE, transformer, and efficient channel attention (ECA). Considering the noise pollution brought about by the capacity regeneration phenomenon and the dataset acquisition error during battery usage, the SDAE is used to reconstruct and denoise the input data and extract the features. The sequence information of the reconstructed data is then captured through the transformer network. Finally, the cross-channel integration and interaction of the captured information are performed in combination with the ECA network to realize the RUL prediction of the lithium-ion batteries. This study uses the battery capacity dataset provided by the Center for Advanced Life Cycle Engineering at the University of Maryland. The experimental results show that the proposed algorithm has low error and high accuracy. Compared with that for the suboptimal bi-directional long short-term memory (Bi-LSTM) algorithm, the average RE, mean absolute error (MAE), and root-mean-squared error (RMSE) for the proposed algorithm are relatively reduced by 62.67%, 40.68%, and 34.33%, respectively. Using the B0007 battery capacity dataset provided by the National Aeronautics and Space Administration for generalization verification, the experimental results of the RE, MAE, and RMSE were found to be 1.98%, 3.12%, and 4.16%, respectively. With that being said, the prediction accuracy of the proposed algorithm is higher than that of existing algorithms, such as recurrent neural networks, LSTM, gated recurrent units, and Bi-LSTM. Thus, the generalization of the model is proven.

Key words: lithium-ion battery, SDAE, transformer, attention mechanism, remaining useful life prediction

中图分类号: