1 |
GAO Y Z, ZHANG X, GUO B J, et al. Health-aware multiobjective optimal charging strategy with coupled electrochemical-thermal-aging model for lithium-ion battery[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5): 3417-3429.
|
2 |
SU C, CHEN H J, WEN Z J. Prediction of remaining useful life for lithium-ion battery with multiple health indicators[J]. Eksploatacjai Niezawodność-Maintenance and Reliability, 2021, 23(1): 176-183.
|
3 |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766.
|
|
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
|
4 |
段双明, 杨耀微. 基于分数阶模型的锂电池SOC估计[J]. 电源技术, 2022, 46(8): 862-866.
|
|
DUAN S M, YANG Y W. State of charge estimation of lithium batteries based on fractional model[J]. Chinese Journal of Power Sources, 2022, 46(8): 862-866.
|
5 |
叶乙福. 基于数据驱动的锂离子电池剩余使用寿命预测方法研究[D]. 湖州: 湖州师范学院, 2022.
|
|
YE Y F. Research on prediction method of remaining useful life of lithium-ion battery based on data drive[D]. Huzhou: Huzhou University, 2022.
|
6 |
李彦梅, 刘惠汉, 张朝龙, 等. 基于双高斯模型的锂电池剩余使用寿命预测方法[J]. 电气工程学报, 2022, 17(4): 32-40.
|
|
LI Y M, LIU H H, ZHANG C L, et al. Lithium-ion battery RUL prediction method based on double Gaussian model[J]. Journal of Electrical Engineering, 2022, 17(4): 32-40.
|
7 |
GUHA A, PATRA A. Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1836-1849.
|
8 |
宋胜, 李云伍, 赵颖, 等. 锂离子电池片段数据的荷电状态估计研究[J]. 电源技术, 2022, 46(7): 734-738.
|
|
SONG S, LI Y W, ZHAO Y, et al. Research on SOC estimation based on fragment data of lithium-ion battery[J]. Chinese Journal of Power Sources, 2022, 46(7): 734-738.
|
9 |
YANG J S, FANG W G, CHEN J Y, et al. A lithium-ion battery remaining useful life prediction method based on unscented particle filter and optimal combination strategy[J]. Journal of Energy Storage, 2022, 55: 105648.
|
10 |
LIU K L, SHANG Y L, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2020, 68(4): 3170-3180.
|
11 |
LI X Y, SHU X, SHEN J W, et al. An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles[J]. Energies, 2017, 10(5): 691.
|
12 |
何冰琛, 杨薛明, 王劲松, 等. 基于PCA-GPR的锂离子电池剩余使用寿命预测[J]. 太阳能学报, 2022, 43(5): 484-491.
|
|
HE B C, YANG X M, WANG J S, et al. Prediction of remaining useful life of lithium-ion batteries based on pca-gpr[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 484-491.
|
13 |
刘健, 陈自强, 黄德扬, 等. 基于等压差充电时间的锂离子电池寿命预测[J]. 上海交通大学学报, 2019, 53(9): 1058-1065.
|
|
LIU J, CHEN Z Q, HUANG D Y, et al. Remaining useful life prediction for lithium-ion batteries based on time interval of equal charging voltage difference[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1058-1065.
|
14 |
何畏, 罗潇, 曾珍, 等. 利用QPSO改进相关向量机的电池寿命预测[J]. 电子测量与仪器学报, 2020, 34(6): 18-24.
|
|
HE W, LUO X, ZENG Z, et al. Battery life prediction based on QPSO improved relevant vector machine[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(6): 18-24.
|
15 |
徐帅, 刘雨辰, 周飞. 基于RNN的锂离子电池SOC估算研究进展[J]. 电源技术, 2021, 45(2): 263-269.
|
|
XU S, LIU Y C, ZHOU F. Research progress of SOC estimation of lithium ion batteries based on RNN[J]. Chinese Journal of Power Sources, 2021, 45(2): 263-269.
|
16 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705.
|
17 |
高峰, 贾建芳, 元淑芳, 等. 基于GRU-UKF的锂离子电池SOC估计方法研究[J]. 电子测量与仪器学报, 2022, 36(11): 160-169.
|
|
GAO F, JIA J F, YUAN S F, et al. Research on SOC estimation method of lithium-ion battery based on GRU-UKF[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(11): 160-169.
|
18 |
闫志远, 孙桓五, 刘世闯, 等. 一种基于GRU的氢燃料重卡汽车工况下锂离子电池温度预测模型[J/OL]. 中国电机工程学报: 1-12[2023-04-26]. https: //doi.org/10.13334/j.0258-8013.pcsee.221789.
|
|
YAN Z Y, SUN H W, LIU S C, et al. Temperature prediction model of lithium-ion battery under working conditions of hydrogen fuel heavy trucks based on GRU[J/OL]. Proceedings of the CSEE: 1-12[2023-04-26]. https: //doi.org/10.13334/j.0258-8013.pcsee.221789.
|
19 |
YAYAN U, ARSLAN A T, YUCEL H. A novel method for SoH prediction of batteries based on stacked LSTM with quick charge data[J]. Applied Artificial Intelligence, 2021, 35(6): 421-439.
|
20 |
邢子轩, 张凡, 武明虎, 等. 基于WD-GRU的锂离子电池剩余寿命预测[J]. 电源技术, 2022, 46(8): 867-871.
|
|
XING Z X, ZHANG F, WU M H, et al. Remaining life prediction of lithium ion batteries based on WD-GRU[J]. Chinese Journal of Power Sources, 2022, 46(8): 867-871.
|
21 |
张朝龙, 何怡刚, 袁莉芬. 基于EEMD和MKRVM的锂电池剩余寿命预测方法[J]. 电力系统及其自动化学报, 2018, 30(7): 38-44.
|
|
ZHANG C L, HE Y G, YUAN L F. Prediction approach for remaining useful life of lithium-ion battery based on EEMD and MKRVM[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 38-44.
|
22 |
赵沁峰, 蔡艳平, 王新军. 锂电池在不同放电区间下的剩余寿命预测[J]. 中国测试, 2023, 49(3): 159-165, 180.
|
|
ZHAO Q F, CAI Y P, WANG X J. Remaining useful life prediction of lithium battery under different discharge intervals[J]. China Measurement & Test, 2023, 49(3): 159-165, 180.
|
23 |
刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246.
|
|
LIU Q T, XING Y X. Remaining life prediction of lithium-ion battery based on VMD-PSO-GRU model[J]. Energy Storage Science and Technology, 2023, 12(1): 236-246.
|
24 |
WANG F K, AMOGNE Z E, CHOU J H, et al. Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism[J]. Energy, 2022, 254: 124344.
|
25 |
LI L, LI Y J, MAO R Z, et al. Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism[J]. IEEE Transactions on Transportation Electrification, 2023, doi: 10.1109/TTE.2023.3247614.
|
26 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
|
27 |
VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
|
28 |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11531-11539.
|
29 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 7132-7141.
|