1 |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
2 |
ZHANG C P, WANG L Y, LI X, et al. Robust and adaptive estimation of state of charge for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4948-4957.
|
3 |
武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
|
|
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
|
4 |
巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175.
|
|
WU C L, HU W B, MENG J H, et al. State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175.
|
5 |
XU Z C, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: doi: 10.1016/j.energy.2021.122815.
|
6 |
HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598.
|
7 |
HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367.
|
8 |
朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362.
|
|
ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362.
|
9 |
YAN W Z, ZHANG B, ZHAO G Q, et al. A battery management system with a lebesgue-sampling-based extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236.
|
10 |
SHEHAB EL DIN M, HUSSEIN A A, ABDEL-HAFEZ M F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408-417.
|
11 |
SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540.
|
12 |
DAI H F, WEI X Z, SUN Z C, et al. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications[J]. Applied Energy, 2012, 95: 227-237.
|
13 |
SHEN H R, ZHOU X Y, WANG Z J, et al. State of charge estimation for lithium-ion battery using Transformer with immersion and invariance adaptive observer[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103768.
|
14 |
WEI Z B, MENG S J, XIONG B Y, et al. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer[J]. Applied Energy, 2016, 181: 332-341.
|
15 |
CHEN N, ZHANG P, DAI J Y, et al. Estimating the state-of-charge of lithium-ion battery using an H-infinity observer based on electrochemical impedance model[J]. IEEE Access, 2020, 8: 26872-26884.
|
16 |
TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291: doi: 10.1016/j.apenergy. 2021.116812.
|
17 |
李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062.
|
|
LI C R, XIAO F, FAN Y X, et al. A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062.
|
18 |
CALIWAG A, LIM W. Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting[J]. ICT Express, 2021, 7(4): 493-496.
|
19 |
LI R, XU S H, LI S B, et al. State of charge prediction algorithm of lithium-ion battery based on PSO-SVR cross validation[J]. IEEE Access, 2020, 8: 10234-10242.
|
20 |
SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999, 80(1/2): 293-300.
|
21 |
DENG Z W, HU X S, LIN X K, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.118000.
|
22 |
LI J, ZIEHM W, KIMBALL J, et al. Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction[J]. Energy and AI, 2021, 5: doi: 10.1016/j.egyai. 2021.100094.
|
23 |
ZHAO X B, XUAN D J, ZHAO K Y, et al. Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101789.
|
24 |
CHEN J X, FENG X, JIANG L, et al. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network[J]. Energy, 2021, 227: doi: 10.1016/j.energy.2021.120451.
|
25 |
MA L, HU C, CHENG F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102440.
|
26 |
DENG Z W, YANG L, CAI Y S, et al. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery[J]. Energy, 2016, 112: 469-480.
|
27 |
李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1): 131-137.
|
|
LI J B, WEI M, YE M, et al. SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2020, 9(1): 131-137.
|
28 |
YANG F F, LI W H, LI C, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75.
|
29 |
朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176.
|
|
ZHU Y F, HE W W, LI J X, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176.
|
30 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.
|