储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 639-653.doi: 10.19799/j.cnki.2095-4239.2023.0096

• 热点点评 •    下一篇

锂电池百篇论文点评(2022.12.12023.1.31

申晓宇(), 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2023-02-23 出版日期:2023-03-05 发布日期:2023-04-14
  • 通讯作者: 黄学杰 E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
  • 作者简介:申晓宇(1996—),男,博士研究生,研究方向为高能量密度锂二次电池正极和全固态锂电池,E-mail:shenxiaoyu19@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesDec. 12022 to Jan. 312023

Xiaoyu SHEN(), Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-02-23 Online:2023-03-05 Published:2023-04-14
  • Contact: Xuejie HUANG E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的界面受到重点关注。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 固态电池

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 3084 papers online from Dec. 1, 2022 to Jan. 31, 2023. 100 of them were selected to be highlighted. High-nickel ternary layered oxides, LiNiO2 and LiNi0.5Mn1.5O4 as cathode materials are included in the investigations for doping and surface coating to stabilize crystal structural and suppress interface side reactions. For anode, investigations mainly focus on Si-based anode, lithium metal and anode-free technology. Meanwhile, the surface coating, interface construction and binder design draw much interest to relieve the volume expansion of Si-based anode. The interface engineering of Li metal and anode-free collector has been widely studied. Researches for solid state electrolyte including sulfide, polymer and composite electrolyte, emphasize the synthesis process, electrolyte film preparation and electrolyte-electrode interface construction. While large efforts are still devoted to liquid electrolytes for the electrolyte-electrode interface design and regulation using additives. For solid-state batteries, there are a few papers related to the surface coating, design of composite cathode and inhibition of Li dendrite and side reactions. Other relevant works are also presented to the cathode design of lithium sulfur battery. The characterization techniques are focused on chemical component measurement, battery failure analysis, lithium deposition behavior and SEI. Theoretical simulations are directed to battery performance prediction and electrolyte design. The interfaces of electrolyte/electrodes are also drawn large attentions.

Key words: lithium batteries, cathode material, anode material, solid state electrolyte, solid state batteries

中图分类号: