储能科学与技术 ›› 2023, Vol. 12 ›› Issue (3): 639-653.doi: 10.19799/j.cnki.2095-4239.2023.0096
• 热点点评 • 下一篇
申晓宇(), 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2023-02-23
出版日期:
2023-03-05
发布日期:
2023-04-14
通讯作者:
黄学杰
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
申晓宇(1996—),男,博士研究生,研究方向为高能量密度锂二次电池正极和全固态锂电池,E-mail:shenxiaoyu19@mails.ucas.ac.cn;
Xiaoyu SHEN(), Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-02-23
Online:
2023-03-05
Published:
2023-04-14
Contact:
Xuejie HUANG
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“battery*”为关键词检索了Web of Science从2022年12月1日至2023年1月31日上线的锂电池研究论文,共有3084篇,选择其中100篇加以评论。正极材料的研究包括高镍三元材料、镍酸锂和镍锰酸锂的掺杂改性和表面包覆层来稳定结构及抑制界面副反应。负极材料的研究重点包括硅基负极材料、金属锂负极和无负极技术。其中硅基负极材料的相关研究集中在通过表面包覆、界面构建和开发新黏结剂体系来缓解体积膨胀问题。金属锂负极和无负极集流体的界面构筑受到重点关注和研究。固态电解质的研究内容主要包括对硫化物固态电解质、聚合物固态电解质与硫化物-聚合物复合电解质相关的合成、电解质薄膜制备以及电解质-电极界面构筑。液态电解质方面的研究集中在使用添加剂进行电解质-电极界面设计和调控。针对固态电池、正极材料的表面包覆、复合正极制备以及锂枝晶及界面副反应抑制有多篇文献报道。其他电池技术主要偏重液态锂硫电池正极设计。表征分析涵盖了化学成分和电池失效分析、锂除沉积行为和负极SEI。理论模拟工作涉及电池性能预测和电解质设计。电池中电解质与正负极的界面受到重点关注。
中图分类号:
申晓宇, 朱璟, 岑官骏, 乔荣涵, 郝峻丰, 田孟羽, 季洪祥, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.12.1—2023.1.31)[J]. 储能科学与技术, 2023, 12(3): 639-653.
Xiaoyu SHEN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Junfeg HAO, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2022 to Jan. 31, 2023)[J]. Energy Storage Science and Technology, 2023, 12(3): 639-653.
1 | CHENG L, ZHOU Y N, ZHANG B, et al. High-rate Ni-rich single-crystal cathodes with highly exposed{010}active planes through in situ Zr doping[J]. Chemical Engineering Journal, 2023, 452: doi: 10.1016/j.cej.2022.139336. |
2 | WANG T X, YUAN M L, XIE S, et al. Synergistic effect of Al-B co-doping to boost the LiNi0.9Co0.05Mn0.05O2 properties in lithium-ion batteries[J]. Ceramics International, 2022, 48(14): 20605-20611. |
3 | TAN Z L, LI Y J, XI X M, et al. Structural self-reconstruction strategy empowering Ni-rich layered cathodes with low-strain for superior cyclabilities[J]. Nano Research, 2022: 1-11. |
4 | OBER S, MESNIER A, MANTHIRAM A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1442-1451. |
5 | RYU H H, KANG G C, ISMOYOJATI R, et al. Intrinsic weaknesses of Co-free Ni-Mn layered cathodes for electric vehicles[J]. Materials Today, 2022, 56: 8-15. |
6 | LIM G, SHIN D, CHAE K H, et al. Regulating dynamic electrochemical interface of LiNi0.5Mn1.5O4 spinel cathode for realizing simultaneous Mn and Ni redox in rechargeable lithium batteries (adv. energy mater. 46/2022)[J]. Advanced Energy Materials, 2022, 12(46): doi: 10.1002/aenm.202270193. |
7 | COURBARON G, PETIT E, SERRANO-SEVILLANO J, et al. Improved electrochemical performance for high-voltage spinel LiNi0.5Mn1.5O4 modified by supercritical fluid chemical deposition[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2812-2824. |
8 | HU T J, ZHOU H C, ZHOU X Y, et al. Silicon cutting waste derived silicon nanosheets with adjustable native SiO2 shell for highly-stable lithiation/delithiation[J]. Small, 2023, 19(7): doi: 10.1002/smll.202204690. |
9 | LIN J, WANG L S, XIE Q S, et al. Stainless steel-like passivation inspires persistent silicon anodes for lithium-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022: doi: 10.1002/anie.202216557. |
10 | CHEN W L, CHEN K Y, ZENG R, et al. In situ construction of S-based artificial solid electrolyte interphases layer for stable silicon anode in lithium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(11): 14136-14143. |
11 | LI Z F, STETSON C, FRISCO S, et al. The role of oxygen in lithiation and solid electrolyte interphase formation processes in silicon-based anodes[J]. Journal of the Electrochemical Society, 2022, 169(12): doi: 10.1149/1945-7111/aca833. |
12 | MALIK Y T, SHIN S Y, JANG J I, et al. Self-repairable silicon anodes using a multifunctional binder for high-performance lithium-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2022: doi: 10.1002/smll.202206141. |
13 | WAN X, KANG C, MU T S, et al. A multilevel buffered binder network for high-performance silicon anodes[J]. ACS Energy Letters, 2022, 7(10): 3572-3580. |
14 | TANG B, HE S G, DENG Y Y, et al. Advanced binder with ultralow-content for high performance silicon anode[J]. Journal of Power Sources, 2023, 556: doi: 10.1016/j.jpowsour.2022.232237. |
15 | TANG W T, FENG L, WEI X J, et al. Three-dimensional crosslinked PAA-TA hybrid binders for long-cycle-life SiOx anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 56910-56918. |
16 | GAO X J, YANG X F, JIANG M, et al. Fast ion transport in Li-rich alloy anode for high-energy-density all solid-state lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(7): doi: 10.1002/adfm.202209715. |
17 | CUI C, YANG H, ZENG C, et al. Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries[J]. Science Advances, 2022, 8(43): doi: 10.1126/sciadv.add2000. |
18 | ZHAO J, HONG M, JU Z J, et al. Durable lithium metal anodes enabled by interfacial layers based on mechanically interlocked networks capable of energy dissipation[J]. Angewandte Chemie (International Ed in English), 2022, 61(52): doi: 10.1002/anie.202214386. |
19 | CHO S, KIM D Y, LEE J I, et al. Highly reversible lithium host materials for high-energy-density anode-free lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(47): doi: 10.1002/adfm.202208629. |
20 | ZHANG Y H, ZHAO P Y, NIE Q N, et al. Enabling 420 wh·kg-1 stable lithium metal pouch cells by lanthanum doping[J]. Advanced Materials (Deerfield Beach, Fla), 2023: doi: 10.1002/adma.202211032. |
21 | LIANG P, SUN H, HUANG C L, et al. A nonflammable high-voltage 4.7 V anode-free lithium battery[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(51): doi: 10.1002/adma.202207361. |
22 | WANG Y X, LIU Y J, NGUYEN M, et al. Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector[J]. Advanced Materials, 2022, 8: doi: 10.1002/adma.202206762. |
23 | YANG Z L, LIU W, CHEN Q, et al. Ultra-smooth and dense lithium deposition toward high-performance lithium metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2023: doi: 10.1002/adma.202210130. |
24 | LIU Y, SU H, ZHONG Y, et al. Revealing the impact of Cl substitution on the crystallization behavior and interfacial stability of superionic lithium argyrodites[J]. Advanced Functional Materials, 2022, 32(47): doi: 10.1002/adfm.202207978. |
25 | WU Z K, WANG R, YU C, et al. Origin of the high conductivity of the LiI-doped Li3PS4 electrolytes for all-solid-state lithium-sulfur batteries working in wide temperature ranges[J]. Industrial & Engineering Chemistry Research, 2023, 62(1): 96-104. |
26 | KIM S, CHART Y A, NARAYANAN S, et al. Thin solid electrolyte separators for solid-state lithium-sulfur batteries[J]. Nano Letters, 2022, 22(24): 10176-10183. |
27 | JIANG Z, PENG H L, LI J R, et al. A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries[J]. Journal of Energy Chemistry, 2022, 74: 309-316. |
28 | LI J W, LI Y Y, ZHANG S N, et al. In situ formed LiI interfacial layer for all-solid-state lithium batteries with Li6PS5Cl solid electrolyte membranes[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55727-55734. |
29 | LU X Z, CHENG Y F, LI M H, et al. A stable polymer-based solid-state lithium metal battery and its interfacial characteristics revealed by cryogenic transmission electron microscopy[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202212847. |
30 | REN Z H, LI J X, CAI M H, et al. An in situ formed copolymer electrolyte with high ionic conductivity and high lithium-ion transference number for dendrite-free solid-state lithium metal batteries[J]. Journal of Materials Chemistry A, 2023, 11(4): 1966-1977. |
31 | MA C, GENG H, LIU X Z. Low concentration salt triggered in situ asymmetric gel electrolyte for Li-S battery[J]. Electrochimica Acta, 2023, 439: doi: 10.1016/j.electacta.2022.141640. |
32 | HOFFKNECHT J P, WETTSTEIN A, ATIK J, et al. Coordinating anions "to the rescue" of the lithium ion mobility in ternary solid polymer electrolytes plasticized with ionic liquids[J]. Advanced Energy Materials, 2023, 13(1): doi: 10.1002/aenm.202202789. |
33 | HOU T Y, QIAN Y M, LI D G, et al. Electronegativity-induced single-ion conducting polymer electrolyte for solid-state lithium batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12428. |
34 | SHAN X Y, MOREY M, LI Z X, et al. A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries[J]. ACS Energy Letters, 2022, 7(12): 4342-4351. |
35 | ZHANG M, ZHOU K F, MA D H, et al. Constructing the high-areal-capacity, solid-state Li polymer battery via the multiscale ion transport pathway design[J]. Materials Today, 2022, 56: 53-65. |
36 | FRAILE-INSAGURBE D, BOARETTO N, ALDALUR I, et al. Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites[J]. Nano Research, 2023: 1-12. |
37 | TEMESGEN N T, BEZABH H K, WERET M A, et al. Solvent-free design of argyrodite sulfide composite solid electrolyte with superb interface and moisture stability in anode-free lithium metal batteries[J]. Journal of Power Sources, 2023, 556: doi: 10.1016/j.jpowsour.2022.232462. |
38 | YANG X F, GAO X J, JIANG M, et al. Grain boundary electronic insulation for high-performance all-solid-state lithium batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(5): doi: 10.1002/anie.202215680. |
39 | WEN F J, CAO S, REN X, et al. Nonflammable dual-salt electrolytes for graphite/LiNi0.8Co0.1Mn0.1O2 lithium-ion batteries: Li+ solvation structure and electrode/eelectrolyte interphase[J]. ACS Applied Energy Materials, 2022, 5(12): 15491-15501. |
40 | YAN Y W, WENG S T, FU A, et al. Tailoring electrolyte dehydrogenation with trace additives: Stabilizing the LiCoO2 cathode beyond 4.6 V[J]. ACS Energy Letters, 2022, 7(8): 2677-2684. |
41 | GHAUR A, PESCHEL C, DIENWIEBEL I, et al. Effective SEI formation via phosphazene-based electrolyte additives for stabilizing silicon-based lithium-ion batteries[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202203503. |
42 | LIM D A, SHIN Y K, SEOK J H, et al. Cathode electrolyte interphase-forming additive for improving cycling performance and thermal stability of Ni-rich LiNixCoyMn1– x– yO2 cathode materials[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 54688-54697. |
43 | ZHANG H, ZENG Z Q, MA F F, et al. Juggling formation of HF and LiF to reduce crossover effects in carbonate electrolyte with fluorinated cosolvents for high-voltage lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(4): doi: 10.1002/adfm.202212000. |
44 | ZHANG D F, LIU M, MA J B, et al. Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2022, 13(1): 1-11. |
45 | CHENG F Y, ZHANG X Y, WEI P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries[J]. Science Bulletin, 2022, 67(21): 2225-2234. |
46 | PARK S Y, PARK S, LIM H Y, et al. Ni-ion-chelating strategy for mitigating the deterioration of Li-ion batteries with nickel-rich cathodes[J]. Advanced Science, 2023, 10(5): doi: 10.1002/advs.202205918. |
47 | MAXIMILIAN K, BASTIAN V H, MARTIN W, et al. Organofluorophosphates as oxidative degradation products in high-voltage lithium ion batteries with NMC or LNMO cathodes[J]. Journal of the Electrochemical Society, 2022, 169(11): doi: 10.1149/1945-7111/ACA2E8. |
48 | LIU J P, YUAN B T, HE N D, et al. Reconstruction of LiF-rich interphases through an anti-freezing electrolyte for ultralow-temperature LiCoO2 batteries[J]. Energy & Environmental Science, 2023: doi: 10.1039/D2EE02411J. |
49 | LIU Q Q, LIU Y, CHEN Z R, et al. An inorganic-dominate molecular diluent enables safe localized high concentration electrolyte for high-voltage lithium-metal batteries[J]. Advanced Functional Materials, 2023, 33(6): doi: 10.1002/adfm.202209725. |
50 | JIANG G X, LIU J D, HE J, et al. Hydrofluoric acid-removable additive optimizing electrode electrolyte interphases with Li+ conductive moieties for 4.5 V lithium metal batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202214422. |
51 | ZHU T Y, STERNLICHT H, HA Y, et al. Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries[J]. Nature Energy, 2023, 8(2): 129-137. |
52 | CAI Y F, LIU C X, YU Z A, et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022: doi: 10.1002/advs.202205590. |
53 | OISHI A, TATARA R, TOGO E, et al. Sulfated alginate as an effective polymer binder for high-voltage LiNi0.5Mn1.5O4 electrodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(46): 51808-51818. |
54 | GUO H J, SUN Y P, ZHAO Y, et al. Surface degradation of single-crystalline Ni-rich cathode and regulation mechanism by atomic layer deposition in solid-state lithium batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(48): doi: 10.1002/anie.202211626. |
55 | LIANG J W, ZHU Y M, LI X N, et al. A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries[J]. Nature Communications, 2023, 14(1): 1-12. |
56 | YU R Z, WANG C H, DUAN H, et al. Manipulating charge-transfer kinetics of lithium-rich layered oxide cathodes in halide all-solid-state batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2023, 35(5): doi: 10.1002/adma.202207234. |
57 | MENG X Y, LIU Y Z, YU L, et al. Air-stable Li2S cathode for quasi-solid-state anode-free batteries with high volumetric energy[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202211062. |
58 | MI Y Q, DENG W, HE C H, et al. In situ polymerized 1, 3-dioxolane electrolyte for integrated solid-state lithium batteries[J]. Angewandte Chemie (International Ed in English), 2023: doi: 10.1002/anie.202218621. |
59 | LIANG J W, LI X N, KIM J T, et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries[J]. Angewandte Chemie (International Ed in English), 2023: doi: 10.1002/anie.202217081. |
60 | SARKAR S, CHEN B W, ZHOU C T, et al. Synergistic approach toward developing highly compatible garnet-liquid electrolyte interphase in hybrid solid-state lithium-metal batteries[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202203897. |
61 | BI Z J, SUN Q F, JIA M Y, et al. Molten salt driven conversion reaction enabling lithiophilic and air-stable garnet surface for solid-state lithium batteries[J]. Advanced Functional Materials, 2022, 32(52): doi: 10.1002/adfm.202208751. |
62 | BIAO J, HAN B, CAO Y D, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration[J]. Advanced Materials, 2023: doi: 10.1002/adma.202208951. |
63 | DUAN H H, LI L S, FU X X, et al. A functional additive to in situ construct stable cathode and anode interfaces for all-solid-state lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 450: doi: 10.1016/j.cej.2022.138208. |
64 | CHEN H J, SUN Q. "ship-In-a-bottle" strategy to construct polymeric sulfur inside mesoporous carbon for high-performance lithium-sulfur batteries[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(2): 777-784. |
65 | LIM W G, PARK C Y, JUNG H, et al. Cooperative electronic structure modulator of Fe single-atom electrocatalyst for high energy and long cycle Li-S pouch cell[J]. Advanced Materials (Deerfield Beach, Fla), 2022: doi: 10.1002/adma.202208999. |
66 | LIU G Q, HOU Q, FAN X X, et al. In situ constructing a catalytic shell for sulfur cathode via electrochemical oxidative polymerization[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 54830-54839. |
67 | SHAN J W, WANG W, ZHANG B, et al. Unraveling the atomic-level manipulation mechanism of Li2S redox kinetics via electron-donor doping for designing high-volumetric-energy-density, lean-electrolyte lithium-sulfur batteries[J]. Advanced Science, 2022, 9(33): doi: 10.1002/advs.202204192. |
68 | LUO Y F, WANG L, WEI Z Y, et al. Cracking-controlled slurry coating of mosaic electrode for flexible and high-performance lithium-sulfur battery[J]. Advanced Energy Materials, 2023, 13(3): doi: 10.1002/aenm.202203621. |
69 | CHEN H, ZHANG X P, LI S L, et al. Free-standing sulfur cathodes enabled by a cationic polymer for lean electrolyte lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(1): 619-627. |
70 | YAO X M, GUO C, SONG C L, et al. In situ interweaved high sulfur loading Li-S cathode by catalytically active metalloporphyrin based organic polymer binders[J]. Advanced Materials (Deerfield Beach, Fla), 2023, 35(7): doi: 10.1002/adma.202208846. |
71 | HOU M X, FENG J S, WANG F H, et al. Constructing a strong-affinity elastic network binder enabled by tannic acid as the bifunctional anchoring agent for high-performance Li-S battery[J]. ACS Applied Energy Materials, 2022, 5(11): 13580-13589. |
72 | CHENG Q, CHEN Z X, LI X Y, et al. Constructing a 700 Wh·kg-1-level rechargeable lithium-sulfur pouch cell[J]. Journal of Energy Chemistry, 2023, 76: 181-186. |
73 | ZHOU M R, DONG W D, XU A, et al. Surface iodine modification inducing robust CEI enables ultra-stable Li-Se batteries[J]. Chemical Engineering Journal, 2023, 455: doi: 10.1016/j.cej.2022.140803. |
74 | PARIKH P, CHUNG H, VO E, et al. Nanoscale compositional mapping of commercial LiNi0.8Co0.15Al0.05O2 cathodes using atom probe tomography[J]. The Journal of Physical Chemistry C, 2022, 126(34): 14380-14388. |
75 | HOU A Y, HUANG C Y, TSAI C L, et al. All-solid-state garnet-based lithium batteries at work-In operando TEM investigations of delithiation/lithiation process and capacity degradation mechanism (adv. sci. 5/2023)[J]. Advanced Science, 2023, 10(5): doi: 10.1002/advs.202370028. |
76 | PARK S Y, JEONG J, SHIN H C. Geometrical effect of active material on electrode tortuosity in all-solid-state lithium battery[J]. Applied Sciences, 2022, 12(24): doi: 10.3390/app122412692. |
77 | KIRKALDY N, SAMIEIAN M A, OFFER G J, et al. Lithium-ion battery degradation: Measuring rapid loss of active silicon in silicon-graphite composite electrodes[J]. ACS Applied Energy Materials, 2022, 5(11): 13367-13376. |
78 | WANG Y, CHANG X W, LI Z Y, et al. Preventing sudden death of high-energy lithium-ion batteries at elevated temperature through interfacial ion-flux rectification[J]. Advanced Functional Materials, 2023, 33(4): doi: 10.1002/adfm.202208329. |
79 | LI J W, LI Y Y, ZHANG S N, et al. In situ formed LiI interfacial layer for all-solid-state lithium batteries with Li6PS5Cl solid electrolyte membranes[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 55727-55734. |
80 | YANG X S, MENG Y, XIAO D. Achievable fast charge transfer by tuning reasonable solid-electrolyte interphase structures[J]. Journal of Materials Chemistry A, 2022, 10(46): 24628-24638. |
81 | QUINN J, WU B B, XU Y B, et al. Tracking the oxidation of silicon anodes using cryo-EELS upon battery cycling[J]. ACS Nano, 2022, 16(12): 21063-21070. |
82 | NARAYANAN S, ULISSI U, GIBSON J S, et al. Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interface[J]. Nature Communications, 2022, 13(1): 1-9. |
83 | LEE H J, KIM A, KIM H S, et al. Inhibition of Si fracture via rigid solid electrolyte interphase in lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(5): doi: 10.1002/aenm.202202780. |
84 | CUI Z H, KHOSLA N, LAI T X, et al. Laser-assisted surface lithium fluoride decoration of a cobalt-free high-voltage spinel LiNi0.5Mn1.5O4 cathode for long-life lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 1247-1255. |
85 | KIM K H, JEONG H, LEE H C, et al. Stable cycling of high-density three-dimensional sintered LiCoO2 plate cathodes[J]. Journal of Power Sources, 2022, 551: doi: 10.1016/j.jpowsour.2022.232223. |
86 | CELÈ J, FRANGER S, LAMY Y, et al. Minimal architecture lithium batteries: Toward high energy density storage solutions[J]. Small (Weinheim an Der Bergstrasse, Germany), 2023: doi: 10.1002/smll.202207657. |
87 | LIU X Y, PENG H J, LI B Q, et al. Untangling degradation chemistries of lithium-sulfur batteries through interpretable hybrid machine learning[J]. Angewandte Chemie (International Ed in English), 2022, 61(48): doi: 10.1002/anie.202214037. |
88 | FARAJI NIRI M, APACHITEI G, LAIN M, et al. The impact of calendering process variables on the impedance and capacity fade of lithium-ion cells: An explainable machine learning approach[J]. Energy Technology, 2022, 10(12): doi: 10.1002/ente.202200893. |
89 | BUMBERGER A E, STEINBACH C, RING J, et al. Mass and charge transport in Li1– δCoO2 thin Films─A complete set of properties and its defect chemical interpretation[J]. Chemistry of Materials, 2022, 34(23): 10548-10560. |
90 | ISAAC J A, DEVAUX D, BOUCHET R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity[J]. Nature Materials, 2022, 21(12): 1412-1418. |
91 | GUO X L, JU Z Y, QIAN X T, et al. A stable solid polymer electrolyte for lithium metal battery with electronically conductive fillers[J]. Angewandte Chemie International Edition, 2023, 62(7): doi: 10.1002/anie.202217538. |
92 | ZENG Y, OUYANG B, LIU J, et al. High-entropy mechanism to boost ionic conductivity[J]. Science, 2022, 378(6626): 1320-1324. |
93 | ZHANG H K, LI R H, CHEN L, et al. Simultaneous stabilization of lithium anode and cathode using hyperconjugative electrolytes for high-voltage lithium metal batteries[J]. Angewandte Chemie (International Ed in English), 2023: doi: 10.1002/anie.202218970. |
94 | JI H Q, WANG Z K, SUN Y W, et al. Weakening Li+ de-solvation barrier for cryogenic Li-S pouch cells[J]. Advanced Materials (Deerfield Beach, Fla), 2022: doi: 10.1002/adma.202208590. |
95 | VISHNUGOPI B S, HASAN M T, ZHOU H W, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J]. ACS Energy Letters, 2023, 8(1): 398-407. |
96 | TANG X Y, XU X S, BAI M, et al. Ultrafast laser-induced cathode/electrolyte interphase for high-voltage poly(ethylene oxide)-based solid batteries[J]. Advanced Functional Materials, 2023, 33(5): doi: 10.1002/adfm.202210465. |
97 | HUANG W B, WANG Y, LV L Z, et al. Prefabrication of "trinity" functional binary layers on a silicon surface to develop high-performance lithium-ion batteries[J]. ACS Nano, 2023, 17(3): 2669-2678. |
98 | DUAN X R, WANG L Y, LI G C, et al. Revealing the intrinsic uneven electrochemical reactions of Li metal anode in ah-level laminated pouch cells[J]. Advanced Functional Materials, 2023, 33(6): doi: 10.1002/adfm.202210669. |
99 | YANG S J, YAO N, JIANG F N, et al. Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells[J]. Angewandte Chemie (International Ed in English), 2022, 61(51): doi: 10.1002/anie.202214545. |
100 | CHANG Z, YANG H J, PAN A Q, et al. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell[J]. Nature Communications, 2022, 13(1): 1-12. |
[1] | 周宇昊, 徐椤赟, 张钟平, 刘灵冲, 南斌, 赵海祺. 基于数字孪生的锂电池热电耦合模型构建与仿真分析[J]. 储能科学与技术, 2023, 12(2): 536-543. |
[2] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[3] | 张德柳, 张言, 王海, 王佳东, 高宣雯, 刘朝孟, 杨东润, 骆文彬. 镁掺杂协同氧化铝包覆优化锂离子电池高镍正极材料[J]. 储能科学与技术, 2023, 12(2): 339-348. |
[4] | 李路路, 陶正顺, 潘庭龙, 杨玮林, 胡官洋. 锂电池分数阶建模及SOC估计策略[J]. 储能科学与技术, 2023, 12(2): 544-551. |
[5] | 张凯, 徐友龙. 钠离子电池锰酸钠正极材料研究进展与发展趋势[J]. 储能科学与技术, 2023, 12(1): 86-110. |
[6] | 刘芊彤, 邢远秀. 基于VMD-PSO-GRU模型的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2023, 12(1): 236-246. |
[7] | 张文舒, 胡方圆, 黄昊, 王旭东, 姚曼. 基于Ti基MXene的储钠负极及其性能调控机制[J]. 储能科学与技术, 2023, 12(1): 35-41. |
[8] | 田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15. |
[9] | 袁紫微, 林楚园, 袁紫嫣, 孙晓丽, 钱庆荣, 陈庆华, 曾令兴. 锌离子电池低温性能研究进展[J]. 储能科学与技术, 2023, 12(1): 278-298. |
[10] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
[11] | 王绍聪, 李伟, 黄瑞琴, 郭艺飞, 刘峥. 锰基钠离子电池正极材料Jahn-Teller效应抑制方法进展[J]. 储能科学与技术, 2023, 12(1): 139-149. |
[12] | 陈清炀, 何映晖, 余官定, 刘铭扬, 徐翀, 李振明. 模型与数据双驱动的锂电池状态精准估计[J]. 储能科学与技术, 2023, 12(1): 209-217. |
[13] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[14] | 张俊, 李琦, 陶莹, 杨全红. 钠离子电池筛分型碳:缘起与进展[J]. 储能科学与技术, 2022, 11(9): 2825-2833. |
[15] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||