储能科学与技术 ›› 2023, Vol. 12 ›› Issue (5): 1409-1426.doi: 10.19799/j.cnki.2095-4239.2023.0256
• 喜迎东北大学建校百年-储能电池关键材料与循环技术专刊 • 上一篇 下一篇
收稿日期:
2023-04-21
修回日期:
2023-04-26
出版日期:
2023-05-05
发布日期:
2023-05-29
通讯作者:
刘朝孟
E-mail:2271795@stu.neu.edu.cn;liuzhaomeng@smm.neu.edu.cn
作者简介:
王轩臣(2000—),男,硕士研究生,研究方向为钾离子电池正极层状氧化物材料,E-mail:2271795@stu.neu.edu.cn;
基金资助:
Xuanchen WANG(), Da WANG, Zhaomeng LIU(), Xuanwen GAO, Wenbin LUO
Received:
2023-04-21
Revised:
2023-04-26
Online:
2023-05-05
Published:
2023-05-29
Contact:
Zhaomeng LIU
E-mail:2271795@stu.neu.edu.cn;liuzhaomeng@smm.neu.edu.cn
摘要:
钾离子电池(PIBs)具有资源丰富、成本低廉、环境友好及能量密度高等优点,成为替代锂离子电池(LIBs)的理想新型储能体系。尽管近年来PIBs在电极领域的研究已经取得了显著进展,但当前钾离子电池电解液的研究仍在初级阶段,其设计和使用面临如电解液和电极之间严重的副反应,导致不稳定的固-液界面和低库仑效率等诸多挑战。因此,发展优良的电解液是PIBs实现产业化应用的关键。本文对近年来PIBs电解液的特点及研究进展进行了综述和讨论。首先聚焦于有机电解液、水系电解液、离子液体电解液和固体电解质等4个主流电解液的发展现状和前景,着重介绍了有机电解液中的酯基电解液和醚基电解液,总结了当前PIBs电解液面临的关键问题,包括安全性较差(有机电解液)、电位窗口窄(水系电解液)、离子电导率相对较低(固体电解质)、成本高(离子液体电解液)等,讨论了新型电解液的改性设计和解决方案。本综述的目的是阐述电解液在PIBs中的重要性,探究当前和新兴的PIBs电解液的应用潜力,并对电解液未来发展提出了一些建议和前景。
中图分类号:
王轩臣, 王达, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池电解液的研究进展及展望[J]. 储能科学与技术, 2023, 12(5): 1409-1426.
Xuanchen WANG, Da WANG, Zhaomeng LIU, Xuanwen GAO, Wenbin LUO. Research progress and prospect of potassium ion battery electrolyte[J]. Energy Storage Science and Technology, 2023, 12(5): 1409-1426.
表1
不同电解液钾离子电池的电化学性能"
Materials | Electrolyte | Current density@Cycle number | Capacity/(mAh/g) | Refs |
---|---|---|---|---|
Graphite | 1 mol/L KPF6 EC/DEC | 20 mA/g@200 | 246 | [ |
K0.5MnO2 | 1 mol/L KFSI FTEP | 100 mA/g @100 | 75 | [ |
K1.7Fe[Fe(CN)6]0.9 | 0.5 mol/L KPF6 EC/DEC | 100 mA/g @100 | 140 | [ |
Graphite | 3∶8 (KFSI∶TMP) | 0.2 C@2000 | 220 | [ |
Graphite | 2 mol/L KFSI TEP | 0.2 C@500 | 275 | [ |
Bi/rGO | 0.8 mol/L KFSI EC/DEC | 50 mA/g@50 | 290 | [ |
Graphite | 1 mol/L KPF6 EC/DME | 50 mA/g@500 | 220 | [ |
TiS2 | 1 mol/L KPF6 DME | 4.8 A/g@600 | 63 | [ |
Graphite | 1 mol/L KPF6 DME | 2.8 A/g@3500 | 87 | [ |
PAQS | 1 mol/L KOH | 2 A/g@10000 | 128 | [ |
PAQS-K | 0.5 mol/L KTFSI DOL/DME | 20 mA/g@50 | 190 | [ |
KTi2(PO4)3 | 30 mol/L KAc | 1 A/g@11000 | 58 | [ |
K x Fe y Mn1-y [Fe(CN)6] w ·zH2O | 22 mol/L KCF3SO3 | 100 C@10000 | 94 | [ |
PTCDA | PPCB-SPEs | 20 mA/g@40 | 113 | [ |
K/PEO 50%KFSI/Ni3S2@Ni | PEO-KFSI | 25 mA/g@100 | 312 | [ |
K-S | K-BASE | C/4.2@1000 | 297 | [ |
Graphite | Pyr14TFSI | 250 mA/g@1500 | 42 | [ |
K2/3Ni2/3Te1/3O2 | KTFSI/Pyr13TFSA | C/20@100 | 128 | [ |
K2Mn[Fe(CN)6] | K(PF6)0.75(FSA)0.25/EC/DEC | 15.5 mA/g@20 | 130 | [ |
KPB@PPy@Cloth | KCl-PVA | 500 mA/g@200 | 107 | [ |
1 | TANG Y X, ZHANG Y Y, LI W L, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews, 2015, 44(17): 5926-5940. |
2 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
3 | VERMA R, R K, VARADARAJU U V. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications[J]. Applied Surface Science, 2017, 418: 30-39. |
4 | VERMA R, PARK C J, KOTHANDARAMAN R, et al. Ternary lithium molybdenum oxide, Li2Mo4O13: A new potential anode material for high-performance rechargeable lithium-ion batteries[J]. Electrochimica Acta, 2017, 258: 1445-1452. |
5 | HU Z, HAO J X, SHEN D Y, et al. Electro-spraying/spinning: A novel battery manufacturing technology[J]. Green Energy & Environment, 2022, doi: 10.1016/j.gee.2022.05.004. |
6 | HOSAKA T, KUBOTA K, HAMEED A S, et al. Research development on K-ion batteries[J]. Chemical Reviews, 2020, 120(14): 6358-6466. |
7 | VERMA R, SINGHBABU Y N, DIDWAL P N, et al. Biowaste orange peel-derived mesoporous carbon as a cost-effective anode material with ultra-stable cyclability for potassium-ion batteries[J]. Batteries & Supercaps, 2020, 3(10): 1099-1111. |
8 | VERMA R, DIDWAL P N, KI H S, et al. SnP3/carbon nanocomposite as an anode material for potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 26976-26984. |
9 | LIU Z M, WANG J, LU B G. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries[J]. Science Bulletin, 2020, 65(15): 1242-1251. |
10 | WANG J, LIU Z M, ZHOU J, et al. Insights into metal/metalloid-based alloying anodes for potassium ion batteries[J]. ACS Materials Letters, 2021, 3(11): 1572-1598. |
11 | ZHANG J Y, YAO X H, MISRA R K, et al. Progress in electrolytes for beyond-lithium-ion batteries[J]. Journal of Materials Science & Technology, 2020, 44: 237-257. |
12 | ZHONG C, DENG Y D, HU W B, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
13 | LIU Z M, WANG J, DING H B, et al. Carbon nanoscrolls for aluminum battery[J]. ACS Nano, 2018, 12(8): 8456-8466. |
14 | LIU Z M, WANG J, JIA X X, et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries[J]. ACS Nano, 2019, 13(9): 10631-10642. |
15 | EFTEKHARI A, JIAN Z L, JI X L. Potassium secondary batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4404-4419. |
16 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
17 | 褚绅旭, 杨倩, 李思远, 等. 钾离子电池合金负极与电解液界面作用的研究进展[J]. 工程科学学报, 2023, 45(7): 1101-1115. |
CHU S X, YANG Q, LI S Y, et al. Research progress on the interface interaction between alloys and electrolytes in potassium-ion batteries[J]. Chinese Journal of Engineering, 2023, 45(7): 1101-1115. | |
18 | DHIR S, WHEELER S, CAPONE I, et al. Outlook on K-ion batteries[J]. Chem, 2020, 6(10): 2442-2460. |
19 | FAN S S, LIU H P, LIU Q, et al. Comprehensive insights and perspectives into the recent progress of electrode materials for non-aqueous K-ion battery[J]. Journal of Materiomics, 2020, 6(2): 431-454. |
20 | REN X D, ZHAO Q, MCCULLOCH W D, et al. MoS2 as a long-life host material for potassium ion intercalation[J]. Nano Research, 2017, 10(4): 1313-1321. |
21 | 陈强, 李敏, 李敬发. 普鲁士蓝类似物及其衍生物在钾离子电池中的应用[J]. 储能科学与技术, 2021, 10(3): 1002-1015. |
CHEN Q, LI M, LI J F. Application of Prussian blue analogs and their derivatives in potassium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. | |
22 | VERMA R, DIDWAL P N, HWANG J Y, et al. Recent progress in electrolyte development and design strategies for next-generation potassium-ion batteries[J]. Batteries & Supercaps, 2021, 4(9): 1428-1450. |
24 | XU Y F, DING T J, SUN D M, et al. Recent advances in electrolytes for potassium-ion batteries[J]. Advanced Functional Materials, 2023, 33(6): 2211290. |
25 | LIU Y W, GAO C, DAI L, et al. The features and progress of electrolyte for potassium ion batteries[J]. Small, 2020, 16(44): 2004096. |
26 | PELJO P, GIRAULT H H. Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception[J]. Energy & Environmental Science, 2018, 11(9): 2306-2309. |
27 | QIAN J F, CHEN Y, WU L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072. |
28 | LI B F, ZHAO J, ZHANG Z H, et al. Electrolyte-regulated solid-electrolyte interphase enables long cycle life performance in organic cathodes for potassium-ion batteries[J]. Advanced Functional Materials, 2018: 1807137. |
29 | ZHAO J, ZOU X X, ZHU Y J, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials, 2016, 26(44): 8103-8110. |
30 | FAN L, XIE H B, HU Y Y, et al. A tailored electrolyte for safe and durable potassium ion batteries[J]. Energy & Environmental Science, 2023, 16(1): 305-315. |
31 | HE G, NAZAR L F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127. |
32 | ZHANG Q, MAO J F, PANG WEI KONG, et al. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry[J]. Advanced Energy Materials, 2018, 8(15): 1703288. |
33 | LIU S L, MAO J F, ZHANG Q, et al. An intrinsically non-flammable electrolyte for high-performance potassium batteries[J]. Angewandte Chemie International Edition, 2020, 59(9): 3638-3644. |
34 | LIU S L, MAO J F, ZHANG L, et al. Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries[J]. Advanced Materials, 2021, 33(1): 2006313. |
35 | WANG L, SONG J, QIAO R M, et al. Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. |
36 | TANG Y, ZHANG W X, XUE L H, et al. Polypyrrole-promoted superior cyclability and rate capability of NaxFe[Fe(CN)6] cathodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(16): 6036-6041. |
37 | ZHANG M W, LIANG R L, OR T, et al. Recent progress on high-performance cathode materials for zinc-ion batteries[J]. Small Structures, 2021, 2(2): 2000064. |
38 | XIE J P, LI J L, ZHUO W C, et al. Recent progress of electrode materials cooperated with potassium bis(fluorosulfonyl)imide-containing electrolyte for K-ion batteries[J]. Materials Today Advances, 2020, 6: 100035. |
39 | FAN L, CHEN S H, MA R F, et al. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer[J]. Small, 2018, 14(30): 1801806. |
40 | GU M Y, FAN L, ZHOU J, et al. Regulating solvent molecule coordination with KPF6 for superstable graphite potassium anodes[J]. ACS Nano, 2021, 15(5): 9167-9175. |
41 | FAN L, MA R F, ZHANG Q F, et al. Graphite anode for a potassium-ion battery with unprecedented performance[J]. Angewandte Chemie International Edition, 2019, 58(31): 10500-10505. |
42 | YANG Y, LI P L, WANG N, et al. Fluorinated carboxylate ester-based electrolyte for lithium ion batteries operated at low temperature[J]. Chemical Communications, 2020, 56(67): 9640-9643. |
43 | CHEN C, WU M Q, LIU J H, et al. Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes[J]. Journal of Power Sources, 2020, 471: 228455. |
44 | MU J J, LIU Z M, LAI Q S, et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors[J]. Energy Materials, 2022, 2(6): 200043. |
46 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
47 | XIAO N, MCCULLOCH W D, WU Y Y. Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries[J]. Journal of the American Chemical Society, 2017, 139(28): 9475-9478. |
48 | HOSAKA T, KUBOTA K, KOJIMA H, et al. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries[J]. Chemical Communications, 2018, 54(60): 8387-8390. |
49 | YOSHIDA K, NAKAMURA M, KAZUE Y, et al. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes[J]. Journal of the American Chemical Society, 2011, 133(33): 13121-13129. |
50 | KATOROVA N S, FEDOTOV S S, RUPASOV D P, et al. Effect of concentrated diglyme-based electrolytes on the electrochemical performance of potassium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(8): 6051-6059. |
51 | YANG F, HAO J, LONG J, et al. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry[J]. Advanced Energy Materials, 2021, 11(6): 2003346. |
52 | WANG L P, ZOU J, CHEN S L, et al. TiS2 as a high performance potassium ion battery cathode in ether-based electrolyte[J]. Energy Storage Materials, 2018, 12: 216-222. |
53 | WANG L P, YANG J Y, LI J, et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte[J]. Journal of Power Sources, 2019, 409: 24-30. |
54 | LIM H D, LEE B, BAE Y, et al. Reaction chemistry in rechargeable Li-O2 batteries[J]. Chemical Society Reviews, 2017, 46(10): 2873-2888. |
55 | KIM D M, JUNG S C, HA S, et al. Cointercalation of Mg2+ ions into graphite for magnesium-ion batteries[J]. Chemistry of Materials, 2018, 30(10): 3199-3203. |
56 | YOON G, KIM H, PARK I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials, 2017, 7(2): 1601519. |
57 | WU J X, ZHANG Q, LIU S L, et al. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries[J]. Nano Energy, 2020, 77: 105118. |
58 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
59 | WANG M T, WANG H Q, ZHANG H M, et al. Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green[J]. Journal of Energy Chemistry, 2020, 48: 14-20. |
60 | MASESE T, YOSHII K, YAMAGUCHI Y, et al. Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors[J]. Nature Communications, 2018, 9(1): 1-12. |
61 | JIAN Z L, LIANG Y L, RODRÍGUEZ-PÉREZ I A, et al. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries[J]. Electrochemistry Communications, 2016, 71: 5-8. |
62 | YOSHII K, MASESE T, KATO M, et al. Sulfonylamide-based ionic liquids for high-voltage potassium-ion batteries with honeycomb layered cathode oxides[J]. ChemElectroChem, 2019, 6(15): 3901-3910. |
63 | FENG Y H, LV Y W, MIHIR P, et al. Co-activation for enhanced K-ion storage in battery anodes[J]. National Science Review, 2023, doi: 10.1093/nsr/nwad118/7143135. |
64 | LEONARD D P, WEI Z X, CHEN G, et al. Water-in-salt electrolyte for potassium-ion batteries[J]. ACS Energy Letters, 2018, 3(2): 373-374. |
65 | ZHANG B K, WENG M Y, LIN Z, et al. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16-6 xOx solid-state-electrolyte enables extraordinary conductivity and high stability[J]. Small, 2020, 16(11): 1906374. |
66 | JIANG C, LI H Q, WANG C L. Recent progress in solid-state electrolytes for alkali-ion batteries[J]. Science Bulletin, 2017, 62(21): 1473-1490. |
67 | RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J]. Advanced Functional Materials, 2020, 30(12): 1909486. |
68 | CHA J H, DIDWAL P N, KIM J M, et al. Poly(ethylene oxide)-based composite solid polymer electrolyte containing Li7La3Zr2O12 and poly(ethylene glycol) dimethyl ether[J]. Journal of Membrane Science, 2020, 595: 117538. |
69 | WANG H C, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215. |
70 | DIDWAL P, SINGHBABU Y N, VERMA R, et al. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries[J]. Energy Storage Materials, 2021, 37: 476-490. |
71 | LIU W, LEE S W, LIN D C, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2(5): 1-7. |
72 | STEVENS J R, MELLANDER B E. Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature[J]. Solid State Ionics, 1986, 21(3): 203-206. |
73 | SREEKANTH T, JAIPAL REDDY M, SUBBA RAO U V. Polymer electrolyte system based on (PEO+KBrO3)—Its application as an electrochemical cell[J]. Journal of Power Sources, 2001, 93(1/2): 268-272. |
74 | SUBBA REDDY C V, SHARMA A K, NARASIMHA RAO V R. Characterization of a solid state battery based on polyblend of (PVP+PVA+KBrO3) electrolyte[J]. Ionics, 2004, 10(1): 142-147. |
75 | ACHARI V S, SHARMA A K, et al. Preparation and electrical characterization of (PVC+KBrO3) polymer electrolytes for solid state battery applications[J]. Ionics, 2007, 13(6): 435-439. |
76 | FEI H F, LIU Y N, AN Y L, et al. Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode[J]. Journal of Power Sources, 2018, 399: 294-298. |
77 | YUAN H M, LI H, ZHANG T S, et al. A K2Fe4O7 superionic conductor for all-solid-state potassium metal batteries[J]. Journal of Materials Chemistry A, 2018, 6(18): 8413-8418. |
78 | FEI H F, LIU Y N, AN Y L, et al. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode[J]. Journal of Power Sources, 2019, 433: 226697. |
79 | LU X C, BOWDEN M E, SPRENKLE V L, et al. A low cost, high energy density, and long cycle life potassium-sulfur battery for grid-scale energy storage[J]. Advanced Materials, 2015, 27(39): 5915-5922. |
80 | EREMIN R A, KABANOVA N A, MORKHOVA Y A, et al. High-throughput search for potential potassium ion conductors: A combination of geometrical-topological and density functional theory approaches[J]. Solid State Ionics, 2018, 326: 188-199. |
81 | WANG J, LEI G T, HE T, et al. Defect-rich potassium amide: A new solid-state potassium ion electrolyte[J]. Journal of Energy Chemistry, 2022, 69: 555-560. |
82 | DOUX J M, LEGUAY L, LE GAL LA SALLE A, et al. K3Sb4O10(BO3): A solid state K-ion conductor[J]. Solid State Ionics, 2018, 324: 260-266. |
83 | ONUMA H, KUBOTA K, MURATSUBAKI S, et al. Application of ionic liquid as K-ion electrolyte of graphite//K2Mn[Fe(CN)6]cell[J]. ACS Energy Letters, 2020, 5(9): 2849-2857. |
84 | BELTROP K, BEUKER S, HECKMANN A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science, 2017, 10(10): 2090-2094. |
85 | DE SOUZA R M, DE SIQUEIRA L J A, KARTTUNEN M, et al. Molecular dynamics simulations of polymer-ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries[J]. Journal of Chemical Information and Modeling, 2020, 60(2): 485-499. |
86 | MASESE T, YOSHII K, KATO M, et al. A high voltage honeycomb layered cathode framework for rechargeable potassium-ion battery: P2-type K2/3Ni1/3Co1/3Te1/3O2[J]. Chemical Communications, 2019, 55(7): 985-988. |
87 | DENG L Q, ZHANG Y C, WANG R T, et al. Influence of KPF6 and KFSI on the performance of anode materials for potassium-ion batteries: A case study of MoS2[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22449-22456. |
88 | HOSAKA T, MATSUYAMA T, KUBOTA K, et al. Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 34873-34881. |
89 | LU K, ZHANG H, GAO S Y, et al. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes[J]. Nanoscale, 2018, 10(44): 20754-20760. |
[1] | 刘畅, 姚君君, 孙颖, 冯大明, 郑宏杰, 马天翼. 乳化/氧化协同制备高倍率钾离子电池负极用沥青基碳微球[J]. 储能科学与技术, 2023, 12(5): 1444-1452. |
[2] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[3] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[4] | 李尚倬, 龙禹彤, 刘朝孟, 高宣雯, 骆文彬. 钾离子电池聚阴离子正极材料的研究进展[J]. 储能科学与技术, 2023, 12(5): 1348-1363. |
[5] | 韩文哲, 赖青松, 高宣雯, 骆文彬. 钾离子电池锰基层状氧化物正极的研究进展[J]. 储能科学与技术, 2023, 12(5): 1364-1379. |
[6] | 张慧敏, 王京, 王一博, 郑家新, 邱景义, 曹高萍, 张浩. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382. |
[7] | 田孟羽, 武怿达, 郝峻丰, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.10.01—2022.11.30)[J]. 储能科学与技术, 2023, 12(1): 1-15. |
[8] | 翟朋博, 常冬梅, 毕志杰, 赵宁, 郭向欣. 锂镧锆氧(LLZO)基固态锂电池界面关键问题研究进展[J]. 储能科学与技术, 2022, 11(9): 2847-2865. |
[9] | 吴敬华, 杨菁, 刘高瞻, 王脂胭, 张秩华, 俞海龙, 姚霞银, 黄学杰. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745. |
[10] | 翁素婷, 刘泽鹏, 杨高靖, 张思蒙, 张啸, 方遒, 李叶晶, 王兆翔, 王雪锋, 陈立泉. 冷冻电镜表征锂电池中的辐照敏感材料[J]. 储能科学与技术, 2022, 11(3): 760-780. |
[11] | 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.4.1—2021.5.31)[J]. 储能科学与技术, 2021, 10(4): 1237-1252. |
[12] | 陈强, 李敏, 李敬发. 普鲁士蓝类似物及其衍生物在钾离子电池中的应用[J]. 储能科学与技术, 2021, 10(3): 1002-1015. |
[13] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[14] | 池上森, 姜益栋, 王庆荣, 叶子威, 余凯, 马骏, 靳俊, 王军, 王朝阳, 温兆银, 邓永红. 液体电解液改性石榴石型固体电解质与锂负极的界面[J]. 储能科学与技术, 2021, 10(3): 914-924. |
[15] | 崔言明, 张秩华, 黄园桥, 林久, 姚霞银, 许晓雄. 全固态锂电池的电极制备与组装方法[J]. 储能科学与技术, 2021, 10(3): 836-847. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||