1 |
DENG Y W, YING H J, E J, et al. Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries[J]. Energy, 2019, 176: 91-102.
|
2 |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939.
|
|
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
|
3 |
HOSSAIN LIPU M S, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115-133.
|
4 |
李旭东, 张向文. 基于主成分分析与WOA-Elman的锂离子电池SOH估计[J]. 储能科学与技术, 2022, 11(12): 4010-4021.
|
|
LI X D, ZHANG X W. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model[J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021.
|
5 |
LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67.
|
6 |
GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686.
|
7 |
YANG J F, XIA B, HUANG W X, et al. Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis[J]. Applied Energy, 2018, 212: 1589-1600.
|
8 |
ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.100951.
|
9 |
张滔. 基于时域阻抗谱测量的锂离子电池性能评估[D]. 哈尔滨: 哈尔滨工业大学.
|
|
ZHANG T. Performance evaluation of lithium ion battery based on time domain impedance spectrum measurement[D]. Harbin: Harbin Institute of Technology.
|
10 |
李凌峰, 宫明辉, 乌江. 采用多模模型的锂离子电池荷电状态联合估计算法[J]. 西安交通大学学报, 2021, 55(1): 78-85.
|
|
LI L F, GONG M H, WU J. Joint estimation algorithm for state of charge of Li-ion battery with multi-mode model[J]. Journal of Xi'an Jiaotong University, 2021, 55(1): 78-85.
|
11 |
WANG X Y, WEI X Z, DAI H F. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering different temperature and state of charge[J]. Journal of Energy Storage, 2019, 21: 618-631.
|
12 |
RAIJMAKERS L H J, DANILOV D L, VAN LAMMEREN J P M, et al. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2014, 247: 539-544.
|
13 |
ZHANG Y W, TANG Q C, ZHANG Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications, 2020, 11(1): 1-6.
|
14 |
GUHA A, PATRA A. State of health estimation of lithium-ion batteries using capacity fade and internal resistance growth models[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 135-146.
|
15 |
骆凡, 黄海宏, 王海欣. 基于电化学阻抗谱的退役动力电池荷电状态和健康状态快速预测[J]. 仪器仪表学报, 2021, 41(9): 172-180.
|
|
LUO F, HUANG H H, WANG H X. Rapid prediction of the state of charge and state of health of decommissioned power batteries based on electrochemical impedance spectroscopy[J]. Chinese Journal of Scientific Instrument, 2021, 41(9): 172-180.
|
16 |
DE VRIES H, NGUYEN T T, OP HET VELD B. Increasing the cycle life of lithium ion cells by partial state of charge cycling[J]. Microelectronics Reliability, 2015, 55(11): 2247-2253.
|
17 |
IURILLI P, BRIVIO C, WOOD V. On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: A critical review[J]. Journal of Power Sources, 2021, 505: doi: 10.1016/j.jpowsour.2021.229860.
|
18 |
KŘIVÍK P, VACULÍK S, BAČA P, et al. Determination of state of charge of lead-acid battery by EIS[J]. Journal of Energy Storage, 2019, 21: 581-585.
|
19 |
LOVE C T, VIRJI M B V, ROCHELEAU R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519.
|
20 |
KŘIVÍK P, BAČA P, KAZELLE J. Effect of ageing on the impedance of the lead-acid battery[J]. Journal of Energy Storage, 2021, 36: doi: 10.1016/j.est.2021.102382.
|
21 |
董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J]. 中国电机工程学报, 2022, 42(24): 9094-9104.
|
|
DONG M, FAN W J, WANGZEYU L, et al. Health assessment of lithium-ion batteries based on characteristic frequency impedance[J]. Proceedings of the Chinese Society for Electrical Engineering, 2022, 42(24): 9094-9104.
|
22 |
刘家豪, 张宏伟, 袁永军. 基于LSTM和EIS的锂电池健康状态估计[J]. 传感器与微系统, 2021, 40(12): 59-61, 65.
|
|
LIU J H, ZHANG H W, YUAN Y J. Health state estimation of lithium battery based on LSTM and EIS[J]. Transducer and Microsystem Technologies, 2021, 40(12): 59-61, 65.
|