储能科学与技术 ›› 2023, Vol. 12 ›› Issue (9): 2760-2766.doi: 10.19799/j.cnki.2095-4239.2023.0354

• 储能材料与器件 • 上一篇    下一篇

二维硼锑薄膜作为锂硫电池锚定材料的第一性原理研究

杨殷晨1(), 任山令2, 杨志红2(), 王允辉2   

  1. 1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院
    2.江苏省新能源工程技术 实验室,南京邮电大学理学院信息物理研究中心,江苏 南京 210023
  • 收稿日期:2023-05-22 修回日期:2023-05-30 出版日期:2023-09-05 发布日期:2023-09-16
  • 通讯作者: 杨志红 E-mail:1220024711@njupt.edu.cn;yangzhihong@njupt.edu.cn
  • 作者简介:杨殷晨(1996—),男,硕士,主要研究方向为锂硫电池,E-mail:1220024711@njupt.edu.cn
  • 基金资助:
    国家自然科学基金(11804169)

First principles study of two-dimensional boron antimony films as anchoring materials for lithium-sulfur batteries

Yinchen YANG1(), Shanling REN2, Zhihong YANG2(), Yunhui WANG2   

  1. 1.College of Electronic and Optical Engineering & College of Flexibile Electronices (Future Technology)
    2.New Energy Technology Engineering Laboratory of Jiangsu Province, Information Physics Research Center, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
  • Received:2023-05-22 Revised:2023-05-30 Online:2023-09-05 Published:2023-09-16
  • Contact: Zhihong YANG E-mail:1220024711@njupt.edu.cn;yangzhihong@njupt.edu.cn

摘要:

锂硫电池因其更高的理论能量密度而在电化学储能技术研究中受到越来越多的关注。但是长链多硫化物在电池的充放电过程中容易溶解到电解液中,会造成“穿梭效应”,影响硫电极和锂硫电池的循环稳定性。本文基于第一性原理计算,研究了二维硼锑(BSb)单层作为锂硫电池的锚定材料并抑制穿梭效应的可能性。通过计算多硫化物在BSb单层上的吸附能、物理和化学吸附、差分电荷密度、态密度(DOS)、扩散势垒以及吉布斯自由能,系统地研究了Li2S n 在BSb单层上的吸附过程。随着硫在锂化过程的进行,Li2S n 分子的吸附能从1.64 eV增加到3.44 eV,从而有效地抑制了多硫化物在电解液中的溶解。化学吸附在硫的锂化过程的早期阶段占优,在Li2S6阶段可以形成化学键,保证了高阶Li2S n 能够被有效地吸附并抑制穿梭效应。态密度的计算结果表明,吸附后BSb单层的带隙从0.51 eV降低到0.24 eV,从而有效地改善了导电性。通过CI-NEB方法计算得到了最佳的迁移路径。BSb单层良好的吸附性能和导电性表明其有望成为锂硫电池正极的锚定材料。

关键词: 多硫化物, 吸附能, 第一性原理, 二维材料, 穿梭效应

Abstract:

Lithium-sulphur batteries are receiving increasing attention in research into electrochemical energy storage technologies due to their higher theoretical energy density. However, long-chain polysulfides tend to dissolve into the electrolyte during charge and discharge, causing a "shuttle effect" that can impact the cycling stability of the sulfur electrodes and lithium-sulfur batteries. Based on first-principles calculations, this research investigated a two-dimensional boron antimony (BSb) monolayer to suppress the shuttle effect as an anchoring material for lithium-sulfur batteries. The adsorption process of Li2S n on BSb monolayer was systematically investigated by calculating the adsorption energy, physical and chemical adsorption, differential charge density, density of states (DOS), diffusion barrier, and Gibbs free energy of polysulfide on BSb monolayer. As the lithiation process proceeded, the adsorption energy of Li2S n molecules increased from 1.64 to 3.44 eV, effectively inhibiting the dissolution of polysulfides in the electrolyte. Chemisorption prevails at the early stage of the lithiation process, and chemical bonds can be formed at the Li2S6 stage, which ensures that higher-order Li2S n can be effectively adsorbed and suppress the shuttle effect. The calculation of the density of states showed that the band gap of the BSb monolayer is reduced from 0.51 to 0.24 eV after adsorption, effectively improving the conductivity. The optimal migration paths were obtained using CI-NEB method calculations. The good adsorption properties and electrical conductivity of BSb monolayers indicate their promise as anchoring materials for lithium-sulfur battery cathodes.

Key words: polysulfide, adsorption energy, first principles, two-dimensional materials, shuttle effect

中图分类号: