1 |
THACKERAY M M, WOLVERTON C, ISAACS E D. Electrical energy storage for transportation-Approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
|
2 |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
|
3 |
ZHAO K J, WANG W L, GREGOIRE J, et al. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study[J]. Nano Letters, 2011, 11(7): 2962-2967.
|
4 |
CAI Y M. The anchoring effect of 2D graphdiyne materials for lithium-sulfur batteries[J]. ACS Omega, 2020, 5(22): 13424-13429.
|
5 |
SONG X H, QU Y Y, ZHAO L L, et al. Monolayer Fe3GeX2 (X=S, Se, and Te) as highly efficient electrocatalysts for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11845-11851.
|
6 |
SHAO Y F, WANG Q, HU L, et al. BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights[J]. Carbon, 2019, 149: 530-537.
|
7 |
GRIXTI S, MUKHERJEE S, SINGH C V. Two-dimensional boron as an impressive lithium-sulphur battery cathode material[J]. Energy Storage Materials, 2018, 13: 80-87.
|
8 |
SUN J, SUN Y M, PASTA M, et al. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(44): 9797-9803.
|
9 |
HE F, LI K, YIN C, et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 373: 31-39.
|
10 |
KONG S Z, CAI D, LI G F, et al. Hydrogen-substituted graphdiyne/graphene as an sp/sp2 hybridized carbon interlayer for lithium-sulfur batteries[J]. Nanoscale, 2021, 13(6): 3817-3826.
|
11 |
LI H X, MA S, CAI H Q, et al. Ultra-thin Fe3C nanosheets promote the adsorption and conversion of polysulfides in lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 18: 338-348.
|
12 |
LI Y J, XU P, CHEN G L, et al. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst[J]. Chemical Engineering Journal, 2020, 380: 122595.
|
13 |
KHOSSOSSI N, PANDA P K, SINGH D, et al. Rational design of 2D h-BAs monolayer as advanced sulfur host for high energy density Li-S batteries[J]. ACS Applied Energy Materials, 2020, 3(8): 7306-7317.
|
14 |
付宇, 崔玉福, 李志刚, 等. 三结砷化镓太阳电池-锂离子蓄电池的小卫星电源分系统仿真模型研究[J]. 空间电子技术, 2019, 16(4): 56-67, 88.
|
|
FU Y, CUI Y F, LI Z G, et al. Study on simulation model of small satellite power subsystem of GaInP2/GaAs/Ge solar array-Li-ion battery[J]. Space Electronic Technology, 2019, 16(4): 56-67, 88.
|
15 |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.
|
16 |
GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
|
17 |
YU T T, GAO P F, ZHANG Y, et al. Boron-phosphide monolayer as a potential anchoring material for lithium-sulfur batteries: A first-principles study[J]. Applied Surface Science, 2019, 486: 281-286.
|
18 |
RAO D W, WANG Y H, ZHANG L Y, et al. Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution[J]. Carbon, 2016, 110: 207-214.
|
19 |
ZHANG Q F, WANG Y P, SEH Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015, 15(6): 3780-3786.
|
20 |
CHEN Q Y, WANG H C, LI H, et al. Two-dimensional MnC as a potential anode material for Na/K-ion batteries: A theoretical study[J]. Journal of Molecular Modeling, 2020, 26(4): 1-6.
|
21 |
WU W X, ZHANG Y M, GUO Y H, et al. Exploring anchoring performance of InP3 monolayer for lithium-sulfur batteries: A first-principles study[J]. Applied Surface Science, 2020, 526: 146717.
|
22 |
DU Z Z, CHEN X J, HU W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2019, 141(9): 3977-3985.
|
23 |
SONG X H, QU Y Y, ZHAO L L, et al. Monolayer Fe3GeX2 (X=S, Se, and Te) as highly efficient electrocatalysts for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11845-11851.
|