1 |
GUO P, ZHAO C Z, SHENG N, et al. Enhancement of solar thermal storage properties of phase change composites supported by modified copper foam[J]. Solar Energy Materials and Solar Cells, 2022, 247: 111950. DOI: 10.1016/j.solmat. 2022.111950.
|
2 |
CUI W, SI T Y, LI X X, et al. Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112912. DOI: 10.1016/j.rser.2022.112912.
|
3 |
ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. DOI: 10.1016/j.solener.2010.04.022.
|
4 |
ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983. DOI: 10.1016/j.apenergy.2015.10.075.
|
5 |
崔海亭, 刘凤青, 朱金达, 等. 高孔隙率泡沫金属对相变蓄热的强化研究[J]. 河北科技大学学报, 2010, 31(2): 93-96. DOI: 10.7535/hbkd.2010yx02001.
|
|
CUI H T, LIU F Q, ZHU J D, et al. Enhancement of high porosity metal foam to phase change energy storage[J]. Journal of Hebei University of Science and Technology, 2010, 31(2): 93-96. DOI: 10.7535/hbkd.2010yx02001.
|
6 |
ZHENG H P, WANG C H. Numerical and experimental studies on the heat transfer performance of copper foam filled with paraffin[J]. Energies, 2017, 10(7): 902. DOI: 10.3390/en10070902.
|
7 |
CHANG C, CHEN G W, WU F, et al. Fabrication and thermal performance of 3D copper-mesh-sintered foam/paraffin phase change materials for solar thermal energy storage[J]. Processes, 2022, 10(5): 897. DOI: 10.3390/pr10050897.
|
8 |
MASOOD U, HAGGAG M, HASSAN A, et al. A review of phase change materials as a heat storage medium for cooling applications in the built environment[J]. Buildings, 2023, 13(7): 1595. DOI: 10.3390/buildings13071595.
|
9 |
AL-YASIRI Q, SZABÓ M. Paraffin As a phase change material to improve building performance: An overview of applications and thermal conductivity enhancement techniques[J]. Renewable Energy and Environmental Sustainability, 2021, 6: 38. DOI: 10.1051/rees/2021040.
|
10 |
MOLDGY A, PARAMESHWARAN R. Study on thermal energy storage properties of organic phase change material for waste heat recovery applications[J]. Materials Today: Proceedings, 2018, 5(8): 16840-16848. DOI: 10.1016/j.matpr.2018.05.137.
|
11 |
KURŞUN B, TOKLU E, POLAT F, et al. The effect of outer container geometry on the thermal management of lithium-ion batteries with a combination of phase change material and metal foam[J]. Journal of Energy Storage, 2024, 80: 110227. DOI: 10.1016/j.est.2023.110227.
|
12 |
HEYHAT M M, MOUSAVI S, SIAVASHI M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28: 101235. DOI: 10.1016/j.est.2020.101235.
|
13 |
杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki.2095-4239.2021.0422.
|
|
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki.2095-4239. 2021. 0422.
|
14 |
AHMAD QURESHI Z, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review[J]. International Journal of Heat and Mass Transfer, 2018, 127: 838-856. DOI: 10.1016/j.ijheatmasstransfer.2018.08.049.
|
15 |
XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. DOI: 10.1016/j.apenergy.2013.04.050.
|
16 |
朱洪宇. 相变复合材料的制备及其导热性能研究[D]. 兰州: 兰州理工大学, 2018.ZHU H Y. Preparation and thermal conductivity of phase change composites[D]. Lanzhou: Lanzhou University of Technology, 2018.
|
17 |
HUANG X, LIN Y X, ALVA G, et al. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2017, 170: 68-76. DOI: 10.1016/j.solmat.2017.05.059.
|
18 |
DU Y P, DING Y L. Towards improving charge/discharge rate of latent heat thermal energy storage (LHTES) by embedding metal foams in phase change materials (PCMs)[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 181-188. DOI: 10.1016/j.cep.2016.08.003.
|
19 |
CUI H T. Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam[J]. Applied Thermal Engineering, 2012, 39: 26-28. DOI: 10.1016/j.applthermaleng.2012.01.037.
|