储能科学与技术 ›› 2024, Vol. 13 ›› Issue (11): 3764-3771.doi: 10.19799/j.cnki.2095-4239.2024.0449

• 储能材料与器件 • 上一篇    下一篇

多孔金属泡沫强化石蜡相变蓄热性能

代建龙(), 李果, 曹一通, 杨紫涵, 夏志远, 张恭硕, 陈锐, 盛楠, 朱春宇()   

  1. 中国矿业大学低碳能源与动力工程学院,江苏 徐州 221116
  • 收稿日期:2024-05-22 修回日期:2024-06-18 出版日期:2024-11-28 发布日期:2024-11-27
  • 通讯作者: 朱春宇 E-mail:3037472054@qq.com;zcyls@cumt.edu.cn
  • 作者简介:代建龙(2004—),男,本科生,研究方向为相变储热,E-mail:3037472054@qq.com
  • 基金资助:
    大学生创新创业训练项目(202310290509E);国家自然科学基金项目(22379161)

Enhancing phase change heat storage performance of paraffin using porous metal foam

Jianlong DAI(), Guo LI, Yitong CAO, Zihan YANG, Zhiyuan XIA, Gongshuo ZHANG, Rui CHEN, Nan SHENG, Chunyu ZHU()   

  1. School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2024-05-22 Revised:2024-06-18 Online:2024-11-28 Published:2024-11-27
  • Contact: Chunyu ZHU E-mail:3037472054@qq.com;zcyls@cumt.edu.cn

摘要:

针对石蜡(PW)相变材料热导率低和易泄漏的问题,采用“冰模板法”制备多孔金属泡沫铝作为支撑骨架,通过“真空浸渍法”将石蜡渗入金属泡沫铝的多孔结构中,制得化学性质稳定的相变复合材料(PCC),并对其形貌结构、防泄漏性能、热循环稳定性、热响应性能和热导率进行测试。结果表明,随着铝骨架比例的增加,泄漏情况随之减弱,有效提高了PCC的防泄漏性能。在此基础上对其热物性进行研究,金属泡沫的引入并未影响PW的相变温度,PCC的熔化和凝固峰值分别稳定在61 ℃和51 ℃。然而随着铝骨架比例的增加,PCC的相变焓值呈现下降趋势。经50次相变循环后,PCC的熔化和凝固焓值均基本保持稳定,其中PW@30Al样品的熔化和凝固焓值分别维持在116 J/g和118 J/g,表现出良好的热循环稳定性和相变可逆性。此外,随着铝骨架比例的增加,PCC的导热性能逐渐提高、热响应速度更快,其中PW@30Al样品的热导率由PW的0.2 W/(m·K)增加至3.1 W/(m·K),提高了约15倍,在相变蓄热和热管理等领域具有广泛的应用前景。

关键词: 金属泡沫, 相变材料, 热循环稳定性, 热导率, 相变蓄热

Abstract:

To address the issues of low thermal conductivity and leakage in paraffin (PW) phase change materials, porous aluminum metal foams were fabricated as a supporting framework using the ice template method. PW was then infiltrated into these metal foams via vacuum impregnation, resulting in chemically stable phase change composites (PCCs). The morphology, leakage resistance, thermal cycling stability, thermal response performance, and thermal conductivity of the PCCs were evaluated. Results showed that increasing the aluminum framework ratio significantly reduced leakage, enhancing the leakage resistance of the PCCs. The thermal physical properties were further analyzed, revealing that the inclusion of metal foams did not alter the phase transition temperature of PW, with stable melting and solidification peaks at 61 ℃ and 51 ℃, respectively. However, as the aluminum framework ratio increased, the enthalpy of phase transformation of the PCCs decreased. After 50 phase change cycles, the melting and solidification enthalpy values of the PCCs remained largely stable, with PW@30Al samples retaining enthalpy values of 116 J/g and 118 J/g, respectively, demonstrating excellent thermal cycling stability and phase transition reversibility. Additionally, the thermal conductivity of the PCCs improved progressively with a higher aluminum framework ratio, resulting in a faster thermal response. The thermal conductivity of PW@30Al samples increased from 0.2 W/(m·K) for pure PW to 3.1 W/(m·K), representing approximately a 15-fold increase. These findings suggest that the prepared PCCs have significant potential for applications in phase change heat storage and thermal management.

Key words: metal foam, phase change materials, thermal cycle stability, thermal conductivity, phase change heat storage

中图分类号: