储能科学与技术 ›› 2024, Vol. 13 ›› Issue (12): 4409-4420.doi: 10.19799/j.cnki.2095-4239.2024.0720
收稿日期:
2024-07-10
修回日期:
2024-08-29
出版日期:
2024-12-28
发布日期:
2024-12-23
通讯作者:
袁俊
E-mail:aixiongjie@unido-isec.org;yuanjun@unido-isec.org
作者简介:
艾雄杰(1992—),男,硕士,助理研究员,研究方向为太阳能应用技术,E-mail:aixiongjie@unido-isec.org;
基金资助:
Xiongjie AI(), Jun YUAN(
), Weizhong LYU, Li WAN
Received:
2024-07-10
Revised:
2024-08-29
Online:
2024-12-28
Published:
2024-12-23
Contact:
Jun YUAN
E-mail:aixiongjie@unido-isec.org;yuanjun@unido-isec.org
摘要:
太阳能集热器固有的间歇性和季节性特征,使其运行稳定性常受到挑战,而相变材料(PCM)凭借其出色的储热密度和恒温相变特性,被视为一种极具潜力的能源载体,为加强集热器稳定性开辟了新的研究路径。本文介绍了相变储热技术与太阳能集热器集成的能量分析方法和㶲分析方法,得出集成式集热器性能评价指标和经济性分析指标,同时概述了集成式集热器中PCM的两种主要封装方式,几何封装和整体封装,而且不同类型集热器所采用的封装方式不同。接着详细探讨了集成PCM对平板集热器、真空管集热器及光伏/热(PV/T)集热器性能和经济性的影响,并针对PCM导热性不佳的问题,综述了当前优化集成式集热器性能的主要技术,包括添加翅片以增大换热面积、提升PCM自身的导热性及应用微热管技术以提高传热效率三种强化传热技术。最后,综合评估了集成PCM对太阳能集热器综合性能及经济性的影响,并对集成式集热器的优化方向和研究重点进行了展望,旨在进一步提升其实用性,为促进可再生能源的高效、广泛应用贡献力量。
中图分类号:
艾雄杰, 袁俊, 吕伟中, 万力. 基于相变储热的集成式太阳能集热器研究进展[J]. 储能科学与技术, 2024, 13(12): 4409-4420.
Xiongjie AI, Jun YUAN, Weizhong LYU, Li WAN. Research progress of integrated solar collector based on phase-change heat storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4409-4420.
表1
高导热性复合PCM的集成研究"
相变材料 | 导热材料 | 熔化温度 /℃ | 潜热值 /(kJ/kg) | 导热性提升/% | 集热器类型 | 研究结果 | 文献来源 |
---|---|---|---|---|---|---|---|
石蜡 | 铜纳米颗粒 | 59.6 | 160.3 | 31.4 | 平板集热器 | 复合PCM热导率提高24%,集热效率提升了8.4% | [ |
硬脂酸 | 膨胀石墨 | 53.0 | 163.5 | 960.0 | 真空管集热器 | 加入膨胀石墨可有效提升PCM的储放热速率 | [ |
石蜡 | 单壁碳纳米管 | 35.5 | 190.0 | 12.0 | 平板集热器 | 复合PCM在自然对流下的储热量提高了20.7%,强制对流下提高了21.2% | [ |
石蜡 | 多壁碳纳米管 | — | — | — | PV/T集热器 | 与传统系统相比,利用复合PCM作为冷却介质可以提高系统的电效率 | [ |
六水氯化钙 | 泡沫铜 | 31.8 | 170.8 | 220.0~230.0 | 平板集热器 | 集成复合PCM的集热器日平均集热效率降低了12.8%,热峰迁移能力更强,可以在夜间释放更多的热能 | [ |
石蜡 | 泡沫铜 | 38.0~43.0 | 135.0 | — | 真空管集热器 | 集成复合PCM的集热器热效率比集成纯PCM的集热器效率高5% | [ |
石蜡 | 多壁碳纳米管+SiO | 56.0~60.0 | 190.0 | 87.8 | 平板集热器 | 集成复合PCM的集热器热效率提高了5%~7%,出口水温提高了17 ℃ | [ |
1 | 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(S1): 47-56. DOI: 10.19912/j.0254-0096.2012.s1.001. |
YAN Y F, ZHANG Z E, ZHANG L, et al. Solar energy utilization technology and its application[J]. Acta Energiae Solaris Sinica, 2012, 33(S1): 47-56. DOI: 10.19912/j.0254-0096.2012.s1.001. | |
2 | KALOGIROU S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295. DOI: 10.1016/j.pecs.2004.02.001. |
3 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. DOI: 10.1016/S1359-4311(02)00192-8. |
4 | FARID M M, KHUDHAIR A M, ALI K RAZACK S, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615. DOI: 10.1016/j.enconman.2003.09.015. |
5 | KHAN M M A, IBRAHIM N I, MAHBUBUL I M, et al. Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review[J]. Solar Energy, 2018, 166: 334-350. DOI: 10.1016/j.solener.2018.03.014. |
6 | SADEGHI G, MEHRALI M, SHAHI M, et al. Progress of experimental studies on compact integrated solar collector-storage retrofits adopting phase change materials[J]. Solar Energy, 2022, 237: 62-95. DOI: 10.1016/j.solener.2022.03.070. |
7 | VENGADESAN E, SENTHIL R. A review on recent developments in thermal performance enhancement methods of flat plate solar air collector[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110315. DOI: 10.1016/j.rser.2020.110315. |
8 | PATHAK S K, TYAGI V V, CHOPRA K, et al. Energy, exergy, economic and environmental analyses of solar air heating systems with and without thermal energy storage for sustainable development: A systematic review[J]. Journal of Energy Storage, 2023, 59: 106521. DOI: 10.1016/j.est.2022.106521. |
9 | KALOGIROU S. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters[J]. Solar Energy, 2009, 83(1): 39-48. DOI: 10.1016/j.solener.2008.06.005. |
10 | PANDEY A K, ALI LAGHARI I, REJI KUMAR R, et al. Energy, exergy, exergoeconomic and enviroeconomic (4-E) assessment of solar water heater with/without phase change material for building and other applications: A comprehensive review[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101139. DOI: 10.1016/j.seta.2021.101139. |
11 | CHOPRA K, TYAGI V V, PANDEY A K, et al. PCM integrated glass in glass tube solar collector for low and medium temperature applications: Thermodynamic & techno-economic approach[J]. Energy, 2020, 198: 117238. DOI: 10.1016/j.energy.2020.117238. |
12 | KRISHNANANTH S S, KALIDASA MURUGAVEL K. Experimental study on double pass solar air heater with thermal energy storage[J]. Journal of King Saud University - Engineering Sciences, 2013, 25(2): 135-140. DOI: 10.1016/j.jksues.2012.05.004. |
13 | ARFAOUI N, BOUADILA S, GUIZANI A. A highly efficient solution of off-sunshine solar air heating using two packed beds of latent storage energy[J]. Solar Energy, 2017, 155: 1243-1253. DOI: 10.1016/j.solener.2017.07.075. |
14 | 华维三, 章学来, 刘锋, 等. 新型无水箱相变蓄热式太阳能集热器及热性能研究[J]. 可再生能源, 2017, 35(3): 395-400. DOI: 10.13941/j.cnki.21-1469/tk.2017.03.012. |
HUA W S, ZHANG X L, LIU F, et al. Research on the new non-water tank solar collector with PCM heat storage and thermal performance[J]. Renewable Energy Resources, 2017, 35(3): 395-400. DOI: 10.13941/j.cnki.21-1469/tk.2017.03.012. | |
15 | RAJ A K, SRINIVAS M, JAYARAJ S. Transient CFD analysis of macro-encapsulated latent heat thermal energy storage containers incorporated within solar air heater[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119896. DOI: 10.1016/j. ijheatmasstransfer. 2020.119896. |
16 | SUDHAKAR P,CHERALATHAN M. Encapsulated PCM based double pass solar air heater: A comparative experimental study[J]. Chemical Engineering Communications,2021,208(6): 788-800. |
17 | YANG X J, SUN L L, YUAN Y P, et al. Experimental investigation on performance comparison of PV/T-PCM system and PV/T system[J]. Renewable Energy, 2018, 119: 152-159. DOI: 10.1016/j.renene.2017.11.094. |
18 | BAZRI S, BADRUDDIN I A, NAGHAVI M S, et al. An analytical and comparative study of the charging and discharging processes in a latent heat thermal storage tank for solar water heater system[J]. Solar Energy, 2019, 185: 424-438. DOI: 10.1016/j.solener. 2019. 04.046. |
19 | PAWAR V R, SOBHANSARBANDI S. CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector[J]. Journal of Energy Storage, 2020, 30: 101528. DOI: 10.1016/j.est. 2020.101528. |
20 | VERMA G, SINGH S, CHANDER S, et al. Numerical investigation on transient thermal performance predictions of phase change material embedded solar air heater[J]. Journal of Energy Storage, 2022, 47: 103619. DOI: 10.1016/j.est.2021.103619. |
21 | BRAHMA B, SHUKLA A K, BARUAH D C. Design and performance analysis of solar air heater with phase change materials[J]. Journal of Energy Storage, 2023, 61: 106809. DOI: 10.1016/j.est. 2023.106809. |
22 | EL KHADRAOUI A, BOUADILA S, KOOLI S, et al. Solar air heater with phase change material: An energy analysis and a comparative study[J]. Applied Thermal Engineering, 2016, 107: 1057-1064. DOI: 10.1016/j.applthermaleng.2016.07.004. |
23 | MUTHUKUMARAN J, SENTHIL R. Experimental performance of a solar air heater using straight and spiral absorber tubes with thermal energy storage[J]. Journal of Energy Storage, 2022, 45: 103796. DOI: 10.1016/j.est.2021.103796. |
24 | VENGADESAN E, DHINAKARAN V, SENTHIL S, et al. Performance augmentation of solar air heater using absorber with multi-functional encapsulated PCM tubes[J]. Journal of Energy Storage, 2023, 72: 108296. DOI: 10.1016/j.est.2023.108296. |
25 | TUNCER A D, AMINI A, KHANLARI A. Experimental and transient CFD analysis of parallel-flow solar air collectors with paraffin-filled recyclable aluminum cans as latent heat energy storage unit[J]. Journal of Energy Storage, 2023, 70: 108009. DOI: 10.1016/j.est.2023.108009. |
26 | KOCA A, OZTOP H F, KOYUN T, et al. Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector[J]. Renewable Energy, 2008, 33(4): 567-574. DOI: 10.1016/j.renene.2007.03.012. |
27 | BOUADILA S, KOOLI S, LAZAAR M, et al. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use[J]. Applied Energy, 2013, 110: 267-275. DOI: 10.1016/j.apenergy.2013.04.062. |
28 | GHIAMI A, GHIAMI S. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector[J]. Applied Thermal Engineering, 2018, 133: 797-808. DOI: 10.1016/j.applthermaleng.2017.11.111. |
29 | RAJ A K, SRINIVAS M, JAYARAJ S. A cost-effective method to improve the performance of solar air heaters using discrete macro-encapsulated PCM capsules for drying applications[J]. Applied Thermal Engineering, 2019, 146: 910-920. DOI: 10.1016/j. applthermaleng.2018.10.055. |
30 | AHMADI M, SAMIMI-AKHIJAHANI H, SALAMI P. Thermo-economic and drying kinetic analysis of Oleaster using a solar dryer integrated with phase change materials and recirculation system[J]. Journal of Energy Storage, 2023, 68: 107351. DOI: 10.1016/j.est.2023.107351. |
31 | BRAHMA B, SHUKLA A K, BARUAH D C. Energy, exergy, economic and environmental analysis of phase change material based solar dryer (PCMSD)[J]. Journal of Energy Storage, 2024, 88: 111490. DOI: 10.1016/j.est.2024.111490. |
32 | PAPADIMITRATOS A, SOBHANSARBANDI S, POZDIN V, et al. Evacuated tube solar collectors integrated with phase change materials[J]. Solar Energy, 2016, 129: 10-19. DOI: 10.1016/j.solener.2015.12.040. |
33 | NAGHAVI M S, ONG K S, BADRUDDIN I A, et al. Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes[J]. Energy, 2017, 127: 101-115. DOI: 10.1016/j.energy.2017.03.097. |
34 | CHOPRA K, PATHAK A K, TYAGI V V, et al. Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: An experimental assessment[J]. Energy Conversion and Management, 2020, 203: 112205. DOI: 10.1016/j.enconman.2019.112205. |
35 | CHOPRA K, TYAGI V V, PANDEY A K, et al. Energy, exergy, enviroeconomic & exergoeconomic (4E) assessment of thermal energy storage assisted solar water heating system: Experimental & theoretical approach[J]. Journal of Energy Storage, 2021, 35: 102232. DOI: 10.1016/j.est.2021.102232. |
36 | 刘艳峰, 李彤, 李勇, 等. 相变蓄热U型真空管太阳能集热器热性能研究[J]. 太阳能学报, 2021, 42(7): 244-250. DOI: 10.19912/j.0254-0096.tynxb.2019-0664. |
LIU Y F, LI T, LI Y, et al. Thermal performance of u-pipe evacuated tube solar collector with latent heat thermal energy storage[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 244-250. DOI: 10.19912/j.0254-0096.tynxb.2019-0664. | |
37 | OLFIAN H, MOUSAVI AJAROSTAGHI S S, EBRAHIMNATAJ M, et al. On the thermal performance of evacuated tube solar collector integrated with phase change material[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102437. DOI: 10.1016/j.seta.2022.102437. |
38 | PATHAK S K, TYAGI V V, CHOPRA K, et al. Solar thermal potential of phase change material based U-pipe ETSCs for different climatic zones: Evaluating energy matrices and economic viability[J]. Sustainable Materials and Technologies, 2024, 40: e00857. DOI: 10.1016/j.susmat.2024.e00857. |
39 | WU Y Y, TONG X Y, LI D, et al. Energy analysis of evacuated tube solar collector integrating phase change material in northeast China[J]. Journal of Energy Storage, 2022, 55: 105772. DOI: 10.1016/j.est.2022.105772. |
40 | CHOPRA K, TYAGI V V, PATHAK A K, et al. Experimental performance evaluation of a novel designed phase change material integrated manifold heat pipe evacuated tube solar collector system[J]. Energy Conversion and Management, 2019, 198: 111896. DOI: 10.1016/j.enconman.2019.111896. |
41 | PATHAK S K, TYAGI V V, CHOPRA K, et al. Thermal performance and design analysis of U-tube based vacuum tube solar collectors with and without phase change material for constant hot water generation[J]. Journal of Energy Storage, 2023, 66: 107352. DOI: 10.1016/j.est.2023.107352. |
42 | CHOPRA K, TYAGI V V, PATHAK S K, et al. Thermal and chemical reliability of paraffin wax and its impact on thermal performance and economic analysis of solar water heater[J]. Energy for Sustainable Development, 2023, 73: 39-53. DOI: 10.1016/j.esd.2023.01.004. |
43 | PREET S, BHUSHAN B, MAHAJAN T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM)[J]. Solar Energy, 2017, 155: 1104-1120. DOI: 10.1016/j.solener.2017.07.040. |
44 | GAUR A, MÉNÉZO C, GIROU X, ULIEN S. Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium[J]. Renewable Energy, 2017, 109: 168-187. DOI: 10.1016/j.renene.2017.01.062. |
45 | HOSSEINZADEH M, SARDARABADI M, PASSANDIDEH-FARD M. Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material[J]. Energy, 2018, 147: 636-647. DOI: 10.1016/j.energy.2018.01.073. |
46 | PRAKASH K B, CHINNASAMY S, MANIMUTHU C, et al. Assimilation of a novel thermal collector and phase change material in photovoltaic/thermal system - An energy and exergy based comparative study[J]. Journal of Energy Storage, 2024, 81: 110461. DOI: 10.1016/j.est.2024.110461. |
47 | HOSSAIN M S, PANDEY A K, SELVARAJ J, et al. Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis[J]. Renewable Energy, 2019, 136: 1320-1336. DOI: 10.1016/j.renene. 2018.10.097. |
48 | SU D, JIA Y T, LIN Y X, et al. Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials[J]. Energy and Buildings, 2017, 153: 382-391. DOI: 10.1016/j.enbuild.2017.08.027. |
49 | FAYAZ H, RAHIM N A, HASANUZZAMAN M, et al. Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM[J]. Renewable Energy, 2019, 143: 827-841. DOI: 10.1016/j.renene.2019.05.041. |
50 | TAQI AL-NAJJAR H M, MAHDI J M, ALSHARIFI T, et al. Thermodynamic modeling and performance analysis of photovoltaic-thermal collectors integrated with phase change materials: Comprehensive energy and exergy analysis[J]. Results in Engineering, 2024, 22: 102277. DOI: 10.1016/j. rineng. 2024. 102277. |
51 | MAATALLAH T, ZACHARIAH R, AL-AMRI F G. Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water)[J]. Solar Energy, 2019, 193: 195-204. DOI: 10.1016/j.solener. 2019. 09.063. |
52 | AL-WAELI A H A, KAZEM H A, CHAICHAN M T, et al. Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study[J]. Thermal Science and Engineering Progress, 2019, 11: 213-230. DOI: 10.1016/j.tsep.2019.04.002. |
53 | KIBRIA M G, MOHTASIM M S, PAUL U K, et al. Impact of hybrid nano PCM (paraffin wax with Al2O3 and ZnO nanoparticles) on photovoltaic thermal system: Energy, exergy, exergoeconomic and enviroeconomic analysis[J]. Journal of Cleaner Production, 2024, 436: 140577. DOI: 10.1016/j.jclepro.2024.140577. |
54 | ABOKERSH M H, EL-MORSI M, SHARAF O, et al. On-demand operation of a compact solar water heater based on U-pipe evacuated tube solar collector combined with phase change material[J]. Solar Energy, 2017, 155: 1130-1147. DOI: 10.1016/j.solener.2017.07.008. |
55 | ESSA M A, MOSTAFA N H, IBRAHIM M M. An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with PCMs[J]. Energy Conversion and Management, 2018, 177: 1-10. DOI: 10.1016/j.enconman.2018.09.045. |
56 | ESSA M A, ROFAIEL I Y, AHMED M A. Experimental and theoretical analysis for the performance of evacuated tube collector integrated with helical finned heat pipes using PCM energy storage[J]. Energy, 2020, 206: 118166. DOI: 10.1016/j.energy.2020.118166. |
57 | BADIEI Z, ESLAMI M, JAFARPUR K. Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling[J]. Energy, 2020, 192: 116719. DOI: 10.1016/j.energy.2019.116719. |
58 | SINGH A K, AGARWAL N, SAXENA A. Effect of extended geometry filled with and without phase change material on the thermal performance of solar air heater[J]. Journal of Energy Storage, 2021, 39: 102627. DOI: 10.1016/j.est.2021.102627. |
59 | AL-KAYIEM H H, LIN S C. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations[J]. Solar Energy, 2014, 109: 82-92. DOI: 10.1016/j.solener.2014.08.021. |
60 | LI C C, ZHANG B, XIE B S, et al. Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater[J]. Sustainable Cities and Society, 2019, 44: 458-464. DOI: 10.1016/j.scs.2018.10.041. |
61 | HABIB N A, ALI A J, CHAICHAN M T, et al. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system[J]. Thermal Science and Engineering Progress, 2021, 23: 100877. DOI: 10.1016/j.tsep.2021.100877. |
62 | SHAKIBI H, SHOKRI A, SOBHANI B, et al. Numerical analysis and optimization of a novel photovoltaic thermal solar unit improved by Nano-PCM as an energy storage media and finned collector[J]. Renewable and Sustainable Energy Reviews, 2023, 179: 113230. DOI: 10.1016/j.rser.2023.113230. |
63 | HU W T, NICKOLAEVICH A V, HUANG Y, et al. Design and thermal performance evaluation of a new solar air collector with comprehensive consideration of five factors of phase-change materials and copper foam combination[J]. Applied Energy, 2023, 344: 121268. DOI: 10.1016/j.apenergy.2023.121268. |
64 | ARAMESH M, SHABANI B. Experimental evaluation of a self storage integrated evacuated tube solar thermal collector[J]. Journal of Energy Storage, 2023, 62: 106920. DOI: 10.1016/j.est. 2023.106920. |
65 | BHARATHIRAJA R, RAMKUMAR T, KARTHICK L, et al. Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM)[J]. Journal of Energy Storage, 2024, 86: 111163. DOI: 10.1016/j.est. 2024. 111163. |
66 | WANG T Y, DIAO Y H, ZHU T T, et al. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays[J]. Energy Conversion and Management, 2017, 142: 230-243. DOI: 10.1016/j. enconman. 2017.03.039. |
67 | WANG Z Y, DIAO Y H, ZHAO Y H, et al. Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays[J]. Applied Energy, 2020, 261: 114466. DOI: 10.1016/j.apenergy.2019.114466. |
68 | WANG T Y, ZHAO Y H, DIAO Y H, et al. Experimental investigation of a novel thermal storage solar air heater (TSSAH) based on flat micro-heat pipe arrays[J]. Renewable Energy, 2021, 173: 639-651. DOI: 10.1016/j.renene.2021.04.027. |
69 | RANJAN TAMULI B, NATH S. Analysis of micro heat pipe array based evacuated tube solar water heater integrated with an energy storage system for improved thermal performance[J]. Thermal Science and Engineering Progress, 2023, 41: 101801. DOI: 10.1016/j.tsep.2023.101801. |
70 | ZHANG D K, DIAO Y H, WANG Z Y, et al. Thermal performance and optimization of an integrated collector-storage solar air heater based on lap joint-type flat micro-heat pipe arrays[J]. Renewable Energy, 2024, 228: 120624. DOI: 10.1016/j. renene. 2024.120624. |
[1] | 张璐荻, 周国兵. 卧式套管潜热蓄热单元偏心与肋片结构优化模拟[J]. 储能科学与技术, 2024, 13(3): 1019-1029. |
[2] | 俞金翔, 王一波, 国建鸿, 张晓宇. 基于分时电价的热泵供热系统相变储热应用研究[J]. 储能科学与技术, 2024, 13(2): 669-676. |
[3] | 肖振坤, 陈珍, 杨壮, 戚宏勋, 闫君. 基于相变储热的先进高温热泵储能单元的热力学分析[J]. 储能科学与技术, 2024, 13(12): 4330-4338. |
[4] | 李龙, 杨玺庆, 陶玲. 基于修正显热容法对相变储热系统蓄热行为的仿真分析[J]. 储能科学与技术, 2024, 13(11): 3939-3948. |
[5] | 王海岚, 张晓宇, 国建鸿, 赵勇, 陈卓, 王一波. 基于中低温相变材料的管壳式储热单元传热性能数值分析[J]. 储能科学与技术, 2024, 13(10): 3376-3387. |
[6] | 孛衍君, 薛新杰, 王化宁, 赵长颖. 基于相变堆积床的卡诺电池系统设计与实验研究[J]. 储能科学与技术, 2023, 12(9): 2823-2832. |
[7] | 戴宇成, 王增鹏, 刘凯豹, 赵佳腾, 刘昌会. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
[8] | 张亚磊, 崔海亭, 王晨, 陈浩松, 王超. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798. |
[9] | 田曦, 熊亚选, 任静, 赵彦琦, 晋世豪, 李烁, 杨洋, 丁玉龙. 碳捕捉对废弃混凝土复合相变储热材料性能的影响[J]. 储能科学与技术, 2023, 12(12): 3709-3719. |
[10] | 杨洋, 熊亚选, 任静, 赵彦琦, 李烁, 田曦, 丁玉龙. 碳捕捉对电石渣-钢渣复合相变储热材料性能的影响[J]. 储能科学与技术, 2023, 12(12): 3690-3698. |
[11] | 贾亦轩, 姜金玉, 张叶龙, 宋鹏飞, 徐桂芝, 张高群, 金翼. 电热相变储能系统的动态储热性能评价[J]. 储能科学与技术, 2023, 12(12): 3670-3677. |
[12] | 杨 玉清. 相变储热技术在绿色建筑中的实践与应用[J]. 储能科学与技术, 2023, 12(12): 3886-3888. |
[13] | 尹蓉. 计算机技术在相变储热能效提升中的应用[J]. 储能科学与技术, 2023, 12(12): 3889-3891. |
[14] | 常健, 宋航, 康宇震, 卢涛, 唐志伟. 高温复合相变储热在城市清洁能源改造中的应用[J]. 储能科学与技术, 2023, 12(11): 3471-3478. |
[15] | 姜竹, 邹博杨, 丛琳, 谢春萍, 李传, 谯耕, 赵彦琦, 聂彬剑, 张童童, 葛志伟, 马鸿坤, 金翼, 李永亮, 丁玉龙. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||