1 |
赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1): 154-162.
|
|
ZHAO X B, LU J T, YUAN Y, et al. Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1): 154-162.
|
2 |
郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296.
|
|
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296.
|
3 |
HE Y L, WANG K, QIU Y, et al. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions[J]. Applied Thermal Engineering, 2019, 149: 448-474.
|
4 |
CACCIA M, TABANDEH-KHORSHID M, ITSKOS G, et al. Ceramic–metal composites for heat exchangers in concentrated solar power plants[J]. Nature, 2018, 562: 406-409.
|
5 |
GUO Z P, ZHAO Y, ZHU Y X, et al. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems[J]. Progress in Nuclear Energy, 2018, 108: 111-121.
|
6 |
刘丽辉, 张航, 彭子安, 等. 板式相变储能换热器的性能优化[J]. 储能科学与技术, 2021, 10(5): 1745-1752.
|
|
LIU L H, ZHANG H, PENG Z A, et al. Energy storage optimization of a plate-type phase change heat exchanger[J]. Energy Storage Science and Technology, 2021, 10(5): 1745-1752.
|
7 |
MANENTE G, FORTUNA F M. Supercritical CO2 power cycles for waste heat recovery: A systematic comparison between traditional and novel layouts with dual expansion[J]. Energy Conversion and Management, 2019, 197: 111777.
|
8 |
AHN Y, LEE J, KIM S G, et al. Design consideration of supercritical CO2 power cycle integral experiment loop[J]. Energy, 2015, 86: 115-127.
|
9 |
徐婷婷, 赵红霞, 韩吉田, 等. 结构和工况参数对印刷电路板式换热器性能的影响[J]. 热力发电, 2020, 49(12): 28-35.
|
|
XU T T, ZHAO H X, HAN J T, et al. Influence of structural and operating condition parameters on performance of printed circuit heat exchanger[J]. Thermal Power Generation, 2020, 49(12): 28-35.
|
10 |
刘妍君, 邵应娟, 钟文琪. 翼型印刷电路板式换热器内流动与换热特性[J]. 东南大学学报(自然科学版), 2022, 52(2): 320-327.
|
|
LIU Y J, SHAO Y J, ZHONG W Q. Flow and heat transfer characteristics of airfoil printed circuit heat exchangers[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 320-327.
|
11 |
SUN E H, XU J L, LI M J, et al. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J]. Energy Conversion and Management, 2018, 172: 138-154.
|
12 |
WANG W Q, QIU Y, HE Y L, et al. Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power[J]. International Journal of Heat and Mass Transfer, 2019, 135: 837-846.
|
13 |
CHEN F, ZHANG L S, HUAI X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50.
|
14 |
CUI X Y, GUO J F, HUAI X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366.
|
15 |
LI Z, LU D G, WANG Z C, et al. Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack[J]. Energy, 2023, 282: 128600.
|
16 |
XU X Y, MA T, LI L, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle[J]. Applied Thermal Engineering, 2014, 70(1): 867-875.
|
17 |
KIM T H, KWON J G, YOON S H, et al. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle[J]. Nuclear Engineering and Design, 2015, 288: 110-118.
|
18 |
时红远, 刘华, 熊建国, 等. 丁胞与翼形肋片相结合的印刷电路板式换热器流动与换热特性的研究[J]. 工程热物理学报, 2019, 40(4): 857-862.
|
|
SHI H Y, LIU H, XIONG J G, et al. Study on flow and heat transfer characteristics of an airfoil printed circuit heat exchanger with dimples[J]. Journal of Engineering Thermophysics, 2019, 40(4): 857-862.
|
19 |
NIST web book[EB/OL]. http: webbook.nist.gov/chemistry/fluid.
|
20 |
ISHIZUKA T, KATO Y, MUTO Y, et al. Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop[C]//The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulic, 2005
|
21 |
张永. 翼型流道印刷板式换热器内超临界氮的流动与换热性能研究[D]. 镇江: 江苏科技大学, 2019.
|
|
ZHANG Y. Study on performance of flow and heat transfer of supercritical nitrogen in airfoil fin printed plate heat exchanger[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019.
|
22 |
GU H D, CHEN Y P, WU J F, et al. Performance investigation on twisted elliptical tube heat exchangers with coupling-vortex square tube layout[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119473.
|
23 |
GU H D, CHEN Y P, SUNDÉN B, et al. Influence of alternating V-rows tube layout on thermal-hydraulic characteristics of twisted elliptical tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120070.
|
24 |
GU H D, CHEN Y P, WU J F, et al. Numerical study on performances of small incline angle helical baffle electric heaters with axial separation[J]. Applied Thermal Engineering, 2017, 126: 963-975.
|
25 |
HESSELGREAVES J E. Rationalisation of second law analysis of heat exchangers[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4189-4204.
|