1 |
张贵萍, 闫筱炎, 王兵, 等. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140.
|
|
ZHANG G P, YAN X Y, WANG B, et al. Long life lithium iron phosphate battery and its materials and process[J]. Energy Storage Science and Technology, 2023, 12(7): 2134-2140.
|
2 |
易永利, 于冉, 李武, 等. Mo, Al掺杂的Li7La3Zr2O12基复合固态电解质的制备及全固态电池性能研究[J]. 储能科学与技术, 2023, 12(5): 1490-1499.
|
|
YI Y L, YU R, LI W, et al. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys[J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499.
|
3 |
黄渭彬, 张彪, 范金成, 等. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092.
|
|
HUANG W B, ZHANG B, FAN J C, et al. Preparation and modification of ZIF-8 composite PEO based solid electrolyte[J]. Energy Storage Science and Technology, 2023, 12(4): 1083-1092.
|
4 |
LI J L, FLEETWOOD J, HAWLEY W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956.
|
5 |
黎冲, 王成辉, 王高, 等. 锂电池SOC估计的实现方法分析与性能对比[J]. 储能科学与技术, 2022, 11(10): 3328-3344.
|
|
LI C, WANG C H, WANG G, et al. Review on implementation method analysis and performance comparison of lithium battery state of charge estimation[J]. Energy Storage Science and Technology, 2022, 11(10): 3328-3344.
|
6 |
PENG S, XU L, ZHANG W, et al. Overview of state of power prediction methods for lithium-ion batteries[J]. Journal of Mechanical Engineering, 2022, 58(20): 361.
|
7 |
吴盛军, 袁晓冬, 徐青山, 等. 锂电池健康状态评估综述[J]. 电源技术, 2017, 41(12): 1788-1791.
|
|
WU S J, YUAN X D, XU Q S, et al. Review on lithium-ion battery health state assessment[J]. Chinese Journal of Power Sources, 2017, 41(12): 1788-1791.
|
8 |
李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994.
|
|
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994.
|
9 |
谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010.
|
|
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010.
|
10 |
孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191.
|
|
SUN D, CHEN X K. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191.
|
11 |
程泽, 孙幸勉, 程思璐. 一种锂离子电池荷电状态估计与功率预测方法[J]. 电工技术学报, 2017, 32(15): 180-189.
|
|
CHENG Z, SUN X M, CHENG S L. Method for estimation of state of charge and power prediction of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 180-189.
|
12 |
武强, 钟勇, 黄志荣, 等. 变温度下EKF和UKF的锂电池SOC估算对比[J]. 福建工程学院学报, 2022, 20(6): 580-586.
|
|
WU Q, ZHONG Y, HUANG Z R, et al. Comparison of SOC estimation of lithium battery by EKF and UKF at variable temperatures[J]. Journal of Fujian University of Technology, 2022, 20(6): 580-586.
|
13 |
田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750.
|
|
TIAN M F, AN Z G, CHEN X, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750.
|
14 |
XING L K, LING L Y, WU X Y. Lithium-ion battery state-of-charge estimation based on a dual extended Kalman filter and BPNN correction[J]. Connection Science, 2022, 34(1): 2332-2363.
|
15 |
卢路. 基于多尺度DEKF的串联锂电池组SOC估计研究[D]. 淮南: 安徽理工大学, 2022.
|
|
LU L. Study on the estimation of charge state of series lithium-ion battery packs based on multi-time scale DEKF[D]. Huainan: Anhui University of Science & Technology, 2022.
|
16 |
LI W Q, YANG Y, WANG D Q, et al. The multi-innovation extended Kalman filter algorithm for battery SOC estimation[J]. Ionics, 2020, 26(12): 6145-6156.
|
17 |
GU T Y, SHENG J, FAN Q H, et al. The modified multi-innovation adaptive EKF algorithm for identifying battery SOC[J]. Ionics, 2022, 28(8): 3877-3891.
|
18 |
雷克兵, 陈自强. 基于改进多新息扩展卡尔曼滤波的电池SOC估计[J]. 浙江大学学报(工学版), 2021, 55(10): 1978-1985, 2001.
|
|
LEI K B, CHEN Z Q. Estimation of state of charge of battery based on improved multi-innovation extended Kalman filter[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1978-1985, 2001.
|
19 |
孙洁, 刘梦, 刘晓悦, 等. MIAEKF算法对锂电池荷电状态估算的研究[J]. 现代电子技术, 2022, 45(16): 115-120.
|
|
SUN J, LIU M, LIU X Y, et al. Research on MIAEKF algorithm for estimating lithium battery SOC[J]. Modern Electronics Technique, 2022, 45(16): 115-120.
|
20 |
YANG F F, LI W H, LI C, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75.
|
21 |
CHEN J L, LU C L, CHEN C, et al. An improved gated recurrent unit neural network for state-of-charge estimation of lithium-ion battery[J]. Applied Sciences, 2022, 12(5): 2305.
|
22 |
王一全, 黄碧雄, 严晓, 等. 基于LSTM-DaNN的动力电池SOC估算方法[J]. 储能科学与技术, 2020, 9(6): 1969-1975.
|
|
WANG Y Q, HUANG B X, YAN X, et al. SOC estimation method of power battery based on LSTM-DaNN[J]. Energy Storage Science and Technology, 2020, 9(6): 1969-1975.
|
23 |
SHU X, CHEN Z, SHEN J W, et al. State of charge estimation for lithium-ion battery based on hybrid compensation modeling and adaptive H-infinity filter[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 945-957.
|
24 |
SUN D M, YU X L, WANG C M, et al. State of charge estimation for lithium-ion battery based on an intelligent adaptive extended Kalman filter with improved noise estimator[J]. Energy, 2021, 214: 119025.
|
25 |
XU Y H, ZHANG H G, YANG F B, et al. State of charge estimation of supercapacitors based on multi-innovation unscented Kalman filter under a wide temperature range[J]. International Journal of Energy Research, 2022, 46(12): 16716-16735.
|
26 |
WANG D Q, YANG Y, GU T Y. A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation[J]. Journal of Energy Storage, 2023, 62: 106831.
|
27 |
ZENG Y, LI Y, YANG T. State of charge estimation for lithium-ion battery based on unscented Kalman filter and long short-term memory neural network[J]. Batteries, 2023, 9(7): 358.
|
28 |
HOU E G, WANG Z, ZHANG X P, et al. Combined state of charge and state of energy estimation for echelon-use lithium-ion battery based on adaptive extended Kalman filter[J]. Batteries, 2023, 9(7): 362.
|
29 |
YUAN H Y, LIU J G, ZHOU Y, et al. State of charge estimation of lithium battery based on integrated Kalman filter framework and machine learning algorithm[J]. Energies, 2023, 16(5): 2155.
|
30 |
REN X Q, LIU S L, YU X D, et al. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM[J]. Energy, 2021, 234: 121236.
|
31 |
贾明, 李立祥, 李书国, 等. 动力锂离子电池电极结构对其极化特性影响的仿真研究[J]. 中国有色金属学报, 2020, 30(3): 620-628.
|
|
JIA M, LI L X, LI S G, et al. Simulation research of effect of electrode structure on polarization characteristics of power lithium ion battery[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3): 620-628.
|
32 |
KOLLMEYER P, SKELLS M. Turnigy graphene 5000mAh 65C Li-ion battery data[R]. Mendeley Data, 2020
|
33 |
AKHLAGHI S, ZHOU N, HUANG Z Y. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation[C]//2017 IEEE Power & Energy Society General Meeting. Chicago, IL, USA. IEEE, 2017: 1-5.
|