储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1159-1166.doi: 10.19799/j.cnki.2095-4239.2024.0171

• 电池智能制造、在线监测与原位分析专刊 • 上一篇    下一篇

储能锂电池模组温度场数值计算与散热系统优化设计

肖威(), 吴晓文(), 孙静玲, 陈炜   

  1. 湖南科技大学信息与电气工程学院,湖南 湘潭 411201
  • 收稿日期:2024-03-01 修回日期:2024-03-12 出版日期:2024-04-26 发布日期:2024-04-22
  • 通讯作者: 吴晓文 E-mail:xiaowei@mail.hnust.edu.cn;xwu@hnust.edu.cn
  • 作者简介:肖威(2000—),男,硕士研究生,研究方向为电力设备状态评价与故障诊断,E-mail:xiaowei@mail.hnust.edu.cn

Numerical calculation of temperature field of energy storage battery module and optimization design of heat dissipation system

Wei XIAO(), Xiaowen WU(), Jingling SUN, Wei CHEN   

  1. Hunan University of Science and Technology, School of Information and Electrical Engineering, Xiangtan 411201, Hunan, China
  • Received:2024-03-01 Revised:2024-03-12 Online:2024-04-26 Published:2024-04-22
  • Contact: Xiaowen WU E-mail:xiaowei@mail.hnust.edu.cn;xwu@hnust.edu.cn

摘要:

储能电池热失控是引发储能电站事故的主要因素之一,储能电池的热管理对电池使用效率、寿命以及运行安全具有重要意义。本文设计了以60系列大圆柱电池单体为基本单元、额定电量为11.52 kWh的储能电池模组,基于有限元方法建立了电池模组热流耦合数值计算模型,分析电池模组内部风道空气流速以及电池组温度场分布规律,并开展储能电池模组原型充放电温升试验,验证数值计算结果的准确性。进一步优化储能电池模组的温度场分布,通过调整散热孔排布方式对电池模组进行了优化设计,提出一种侧面U形开孔结构,储能电池模组的温度一致性和电芯最大温度得到了显著改善。优化后,模组电芯最大温差降低2.6 ℃,温度标准偏差降低1.18,研究结论可为储能电池模组温升计算与散热设计提供参考。

关键词: 锂电池, 温度场计算, 有限元方法, 散热系统优化

Abstract:

Thermal runaway in energy storage batteries poses a significant risk in energy storage power stations, making thermal management crucial for the efficiency, lifespan, and operational safety of batteries. This study presents the design of an energy storage battery module with a rated capacity of 11.52 kWh, utilizing a 60-series large cylindrical battery as the fundamental unit. A numerical model, based on the finite element method, was developed to couple fluid and temperature fields within the battery module. This model facilitates the analysis of air flow rates in the battery module's air ducts and the temperature field distribution. To validate the accuracy of the numerical calculations, a prototype was subjected to a charging/discharging temperature-rise test. The study further optimizes the temperature field distribution of the battery module by adjusting the arrangement of heat dissipation holes. A novel side U-shaped opening structure is introduced, significantly enhancing the temperature uniformity within the battery module and reducing the maximum temperature of the cells. Postoptimization, the maximum temperature difference in the module cells decreased by 2.6 ℃, and the standard deviation of temperature dropped by 1.18. These findings offer valuable insights for estimating temperature rise in energy storage battery modules and designing efficient heat dissipation mechanisms.

Key words: lithium battery, temperature field calculation, finite element method, heat dissipation system optimization

中图分类号: