储能科学与技术 ›› 2024, Vol. 13 ›› Issue (4): 1310-1325.doi: 10.19799/j.cnki.2095-4239.2023.0882
戴纹硕1(), 郭骞远1, 陈向南1, 张华民1,2, 马相坤1()
收稿日期:
2023-12-06
修回日期:
2023-12-20
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
马相坤
E-mail:dws1134860928@163.com;maxk@dlmu.edu.cn
作者简介:
戴纹硕(1999—),男,硕士研究生,主要研究方向为液流电池储能材料,E-mail:dws1134860928@163.com;
基金资助:
Wenshuo DAI1(), Qianyuan GUO1, Xiangnan CHEN1, Huamin ZHANG1,2, Xiangkun MA1()
Received:
2023-12-06
Revised:
2023-12-20
Online:
2024-04-26
Published:
2024-04-22
Contact:
Xiangkun MA
E-mail:dws1134860928@163.com;maxk@dlmu.edu.cn
摘要:
全钒液流电池是目前技术成熟度最高的一种液流电池,作为大规模长时储能的首选技术之一,可以实现可再生能源平滑输出,为高比例可再生能源并网应用提供保障。其中,双极板是全钒液流电池的关键部件之一。本文从三种全钒液流电池双极板材料耐腐蚀性、导电性、力学性能及电池特性等角度,首先综述了金属、石墨以及碳塑复合双极板材料的优缺点及其最新研究进展,并根据加工工艺和制造成本两方面,展望了三种双极板材料在全钒液流电池领域的应用前景。然后,结合新型液流电池双极板的结构优化研究,从双极板平板结构扩展到双极板流道和电极-双极板一体化结构,分析介绍了不同新型双极板流道结构设计在不同试验条件下的适用性,并从制备工艺和电池性能等方面分析了电极-双极板一体化结构在全钒液流电池领域中的应用前景。最后,针对全钒液流电池双极板的研究现状,总结展望了相应双极板材料及新型双极板结构设计的技术突破要点,为全钒液流电池双极板的未来发展提供了参考和依据。
中图分类号:
戴纹硕, 郭骞远, 陈向南, 张华民, 马相坤. 全钒液流电池双极板材料研究进展[J]. 储能科学与技术, 2024, 13(4): 1310-1325.
Wenshuo DAI, Qianyuan GUO, Xiangnan CHEN, Huamin ZHANG, Xiangkun MA. Research progress of bipolar plate materials for vanadium flow battery[J]. Energy Storage Science and Technology, 2024, 13(4): 1310-1325.
表2
文献报道关于全钒液流电池的碳塑复合双极板的简要介绍"
材料组成 | 制备工艺 | 电导率/ (S/cm) | ASR/ (mΩ·cm2) | 电流密度/(mA/cm2) | EE/% | 参考文献 |
---|---|---|---|---|---|---|
聚苯硫醚、石墨、碳纳米管、偶联剂 | 挤出成型 | 57.3 | — | 50 | 80 | [ |
环氧树脂、天然片状石墨、科琴黑 | 模压成型 | 114 | 40 | 85 | [ | |
聚乙烯、石墨混合物(石墨、石墨烯)、碳纤维 | 模压成型 | 420.6 | 5 | 100 | 88 | [ |
含氟弹性体、纳米炭黑、碳纤维织物预浸料 | 模压成型、 “软层法” | — | 143 | 100 | 80.4 | [ |
聚偏氟乙烯、膨胀石墨粉、石墨粉、仙人掌状纳米碳纤维 | 模压成型、 表面处理 | 198.7 | 25.4 | 200 | 75.23 | [ |
聚苯胺、碳纤维织物预浸料 | 模压成型、 “软层法” | — | 16.7 | 100 | 81.54 | [ |
热塑性硫化橡胶、人造石墨、碳纤维织物、热解石墨片 | 挤出-模压 复合工艺 | 595.62 | 6.46 | — | — | [ |
1 | 许洪华, 邵桂萍, 鄂春良, 等. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44(4): 484-491. |
XU H H, SHAO G P, E C L, et al. Research on China's future energy system and the realistic path of energy transformation[J]. Power Generation Technology, 2023, 44(4): 484-491. | |
2 | ZHU Q Y, CHEN X F, SONG M L, et al. Impacts of renewable electricity standard and renewable energy certificates on renewable energy investments and carbon emissions[J]. Journal of Environmental Management, 2022, 306: 114495. |
3 | AMIRANTE R, CASSONE E, DISTASO E, et al. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies[J]. Energy Conversion and Management, 2017, 132: 372-387. |
4 | ZHANG C Y, YANG Y, LIU X, et al. Mobile energy storage technologies for boosting carbon neutrality[J]. Innovation (Cambridge (Mass)), 2023, 4(6): 100518. |
5 | ZHANG X J, QIN C C, LOTH E, et al. Arbitrage analysis for different energy storage technologies and strategies[J]. Energy Reports, 2021, 7: 8198-8206. |
6 | 韦媚媚, 项定先. 储能技术应用与发展趋势 [J]. 工业安全与环保, 2023, 49(S1): 4-12. |
WEI M M, XIANG D X. Application and development trend of energy storage [J]. Industrial Safety and Environmental Protection, 2023, 49(S1): 4-12. | |
7 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
8 | SKYLLAS-KAZACOS M, CHAKRABARTI M H, HAJIMOLANA S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, 158(8): R55. |
9 | XIE C Y, YAN H, SONG Y F, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries [J]. Journal of Power Sources, 2023, 564: 232860. |
10 | XU Z C, FAN Q, LI Y, et al. Review of zinc dendrite formation in zinc bromine redox flow battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838. |
11 | SUN K, QI M Y, GUO X R, et al. Research on performance optimization of novel sector-shape all-vanadium flow battery[J]. Sustainability, 2023, 15(19): 14520. |
12 | 陈金庆, 汪钱, 王保国. 全钒液流电池关键材料研究进展[J]. 现代化工, 2006, 26(9): 21-24. |
CHEN J Q, WANG Q, WANG B G. Research progress in key materials for all vanadium redox flow battery[J]. Modern Chemical Industry, 2006, 26(9): 21-24. | |
13 | SATOLA B, KIRCHNER C N, KOMSIYSKA L, et al. Chemical stability of graphite-polypropylene bipolar plates for the vanadium redox flow battery at resting state[J]. Journal of the Electrochemical Society, 2016, 163(10): A2318-A2325. |
14 | SRIVASTAVA A, ROSS K A, SMITH C B. Coating developments towards enabling aluminum as a bipolar plate material for PEM fuel cells[J]. Journal of Power Sources, 2023, 582: 233513. |
15 | XIONG K N, WU W, WANG S F, et al. Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review[J]. Applied Energy, 2021, 301: 117443. |
16 | KE X Y, PRAHL J M, et al. Rechargeable redox flow batteries: Flow fields, stacks and design considerations[J]. Chemical Society Reviews, 2018, 47(23): 8721-8743. |
17 | LIM J W, LEE D G. Carbon fiber/polyethylene bipolar plate-carbon felt electrode assembly for vanadium redox flow batteries (VRFB)[J]. Composite Structures, 2015, 134: 483-492. |
18 | TAHERIAN R. RETRACTED: A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265: 370-390. |
19 | LIU R X, JIA Q, ZHANG B, et al. Protective coatings for metal bipolar plates of fuel cells: A review[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22915-22937. |
20 | CHEN Z H, ZHANG G H, YANG W Z, et al. Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2020, 393: 124675. |
21 | TAN Q Y, WANG Y L. Preparation and performances of modified Ti4O7 doped polypyrrole coating for metallic bipolar plates[J]. Corrosion Science, 2021, 190: 109703. |
22 | HAN J, YOO H, KIM M, et al. High-performance bipolar plate of thin IrOx-coated TiO2 nanotubes in vanadium redox flow batteries[J]. Catalysis Today, 2017, 295: 132-139. |
23 | KIM S, YOON Y, NAREJO G M, et al. Flexible graphite bipolar plates for vanadium redox flow batteries[J]. International Journal of Energy Research, 2021, 45(7): 11098-11108. |
24 | REED D, THOMSEN E, LI B, et al. Stack developments in a kW class all vanadium mixed acid redox flow battery at the Pacific northwest national laboratory[J]. Journal of the Electrochemical Society, 2015, 163(1): A5211-A5219. |
25 | 徐冬清, 范永生, 刘平, 等. 全钒液流电池复合材料双极板研究[J]. 高校化学工程学报, 2011, 25(2): 308-313. |
XU D Q, FAN Y S, LIU P, et al. Research of composite bipolar plate used for vanadium redox flow battery[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 308-313. | |
26 | CHAKRABARTI M H, BRANDON N P, HAJIMOLANA S A, et al. Application of carbon materials in redox flow batteries[J]. Journal of Power Sources, 2014, 253: 150-166. |
27 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 256: 88-95. |
28 | 骆兵, 倪红军, 黄明宇, 等. PEMFC双极板材料及其工艺[J]. 电源技术, 2006, 30(2): 162-164, 172. |
LUO B, NI H J, HUANG M Y, et al. Study on the materials and processes for bipolar plates in PEMFC[J]. Chinese Journal of Power Sources, 2006, 30(2): 162-164, 172. | |
29 | SATOLA B. Review—Bipolar plates for the vanadium redox flow battery[J]. Journal of the Electrochemical Society, 2021, 168(6): 060503. |
30 | CAGLAR B, RICHARDS J, FISCHER P, et al. Conductive polymer composites and coated metals As alternative bipolar plate materials for all-vanadium redox-flow batteries[J]. Advanced Materials Letters, 2014, 5(6): 299-308. |
31 | LOKTIONOV P, KARTASHOVA N, KONEV D, et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery[J]. International Journal of Energy Research, 2022, 46(8): 10123-10132. |
32 | PARK M, JUNG Y J, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2014, 2(38): 15808-15815. |
33 | LIAO W N, JIANG F J, ZHANG Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy, 2020, 152: 1310-1316. |
34 | YU H N, LIM J W, DO SUH J, et al. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(23): 9868-9875. |
35 | LEE D, LIM J W, NAM S, et al. Method for exposing carbon fibers on composite bipolar plates[J]. Composite Structures, 2015, 134: 1-9. |
36 | NAM S, LEE D, LEE D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Composite Structures, 2017, 159: 220-227. |
37 | LIU Z H, WANG B G, YU L X. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. Journal of Energy Chemistry, 2018, 27(5): 1369-1375. |
38 | JIANG F J, LIAO W N, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. Journal of Power Sources, 2021, 482: 228903. |
39 | CHOE J, WOO LIM J. Conductive nanoparticle-embedded carbon composite bipolar plates for vanadium redox flow batteries[J]. Composite Structures, 2024, 329: 117770. |
40 | ONYU K, YEETSORN R, GOSTICK J. Fabrication of bipolar plates from thermoplastic elastomer composites for vanadium redox flow battery[J]. Polymers, 2022, 14(11): 2143. |
41 | KAPOOR M, GAUTAM R K, RAMANI V K, et al. Predicting operational capacity of redox flow battery using a generalized empirical correlation derived from dimensional analysis[J]. Chemical Engineering Journal, 2020, 379: 122300. |
42 | YANG W W, BAI X S, ZHANG W Y, et al. Numerical examination of the performance of a vanadium redox flow battery under variable operating strategies[J]. Journal of Power Sources, 2020, 457: 228002. |
43 | PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(37): e2305572120. |
44 | KUMAR S, JAYANTI S. Effect of flow field on the performance of an all-vanadium redox flow battery[J]. Journal of Power Sources, 2016, 307: 782-787. |
45 | LEE J, KIM J, PARK H. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29483-29492. |
46 | GUNDLAPALLI R, BHATTARAI A, RANJAN R, et al. Characterization and scale-up of serpentine and interdigitated flow fields for application in commercial vanadium redox flow batteries[J]. Journal of Power Sources, 2022, 542: 231812. |
47 | QIAN P, ZHANG H M, CHEN J, et al. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications[J]. Journal of Power Sources, 2008, 175(1): 613-620. |
48 | JING M, ZHANG C, QI X, et al. Gradient-microstructural porous graphene gelatum/flexible graphite plate integrated electrode for vanadium redox flow batteries [J]. International Journal of Hydrogen Energy, 2020, 45(1): 916-923. |
49 | JEONG K I, JEONG J M, OH J, et al. An integrated composite structure with reduced electrode/bipolar plate contact resistance for vanadium redox flow battery[J]. Composites Part B: Engineering, 2022, 233: 109657. |
50 | GAUTAM R K, KUMAR A. A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery[J]. Journal of Energy Storage, 2022, 48: 104003. |
51 | DUAN Z N, QU Z G, REN Q L, et al. Review of bipolar plate in redox flow batteries: Materials, structures, and manufacturing[J]. Electrochemical Energy Reviews, 2021, 4(4): 718-756. |
[1] | 张爱芳, 魏邦达, 李卓昊, 杨洋, 杨添强, 姚俊, 张杰, 刘飞, 李浩秒, 王康丽, 蒋凯. 全钒液流电池建模及SOC在线估计研究进展[J]. 储能科学与技术, 2024, 13(3): 1036-1049. |
[2] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. |
[3] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[4] | 鲁志颖, 江杉, 李全龙, 马可心, 傅腾, 郑志刚, 刘志成, 李淼, 梁永胜, 董知非. 全钒液流电池在充电结束搁置阶段的开路电压变化[J]. 储能科学与技术, 2022, 11(7): 2046-2050. |
[5] | 王瑄, 叶强. 全钒液流电池电堆局部供液不足导致副反应加剧的现象[J]. 储能科学与技术, 2022, 11(5): 1455-1467. |
[6] | 王振宇, 郭子啸, 范新庄, 赵天寿. 全钒液流电池中蛇型和插指型流道的对比[J]. 储能科学与技术, 2022, 11(4): 1121-1130. |
[7] | 张爽, 许伽宁, 张蓉蓉, 刘宗浩, 王琛淇, 刘若男, 荣明林. 全钒液流电池健康状态(SOH)特性[J]. 储能科学与技术, 2022, 11(12): 4022-4029. |
[8] | 朱兆武, 张旭堃, 苏慧, 张健, 王丽娜. 全钒液流电池提高电解液浓度的研究与应用现状[J]. 储能科学与技术, 2022, 11(11): 3439-3446. |
[9] | 祁梦瑶, 侯一晨, 陈磊, 杨立军. 新型径向流动全钒液流电池单元数值模拟[J]. 储能科学与技术, 2022, 11(10): 3209-3220. |
[10] | 丁显, 冯涛, 何广利, 胡婷, 刘延江. 风电光伏波动性电源对电解水制氢电解槽影响的研究进展[J]. 储能科学与技术, 2022, 11(10): 3275-3284. |
[11] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[12] | 李强, 王俊楠, 孙红. 钒液流电池石墨毡电极的MWCNTs-COOH-NS修饰[J]. 储能科学与技术, 2021, 10(6): 2097-2105. |
[13] | 谢克桓, 李传常, 陈荐, 余龙海, 谭准, 秦位海. 全钒液流电池储能仿真模型及荷电状态监测方法研究[J]. 储能科学与技术, 2021, 10(6): 2363-2372. |
[14] | 杨虹, 缪平, 刘庆华. 碳布电极材料对全钒液流电池性能的影响[J]. 储能科学与技术, 2020, 9(3): 707-713. |
[15] | 王秋实, 孙苗苗, 刘庆华, 杨虹, 陈静允, 刘均庆, 梁文斌. 全钒液流电池碳纤维纸电极的表面改性[J]. 储能科学与技术, 2020, 9(3): 714-719. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||