储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1620-1634.doi: 10.19799/j.cnki.2095-4239.2023.0892
收稿日期:
2023-12-11
修回日期:
2023-12-28
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
贺鑫,梁宵
E-mail:shim2021@hnu.edu.cn;xinheabc@hnu.edu.cn;xliang@hnu.edu.cn
作者简介:
石敏(1999—),女,硕士研究生,研究方向为金属负极保护,E-mail:shim2021@hnu.edu.cn;
基金资助:
Min SHI(), Pengjie JIANG, Chen XU, Xin HE(), Xiao LIANG()
Received:
2023-12-11
Revised:
2023-12-28
Online:
2024-05-28
Published:
2024-05-28
Contact:
Xin HE, Xiao LIANG
E-mail:shim2021@hnu.edu.cn;xinheabc@hnu.edu.cn;xliang@hnu.edu.cn
摘要:
锂金属负极因高理论比容量(3860 mAh/g)与低氧化还原电位(-3.04 V vs. SHE)等优势,吸引了高比能电池领域的广泛关注。然而,锂金属负极的实际应用仍面临着诸多难点与挑战,其中锂枝晶生长问题尤为突出。在众多解决策略中,电解液调控策略因工艺简便、系统兼容性强、成本低廉、效果显著等特性,被认为是抑制锂枝晶生长最具应用前景的策略之一。本文首先总结了几种锂枝晶生长模型,包括固体电解质界面扩散控制模型、表面形核生长扩散模型、电荷诱导模型和空间电荷模型等,着重讨论了电解液调控策略抑制枝晶生长的模型基础,结果说明了电极界面层(SEI)的物化性能决定了金属锂的沉积行为,而SEI层的组分、力学性能、脱溶剂化过程等受电解液组分影响。随后系统地归纳了电解液优化策略的研究进展,主要介绍了成膜添加剂、溶剂化调控SEI型添加剂、电荷诱导型添加剂、合金型添加剂、高浓盐电解液和局部高浓盐电解液等,对比了各种策略的优缺点。最后,对电解液优化策略进行了总结并对未来发展方向进行了展望。
中图分类号:
石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634.
Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth[J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634.
1 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
2 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141. |
3 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
4 | CHEN K H, WOOD K N, KAZYAK E, et al. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes[J]. Journal of Materials Chemistry A, 2017, 5(23): 11671-11681. |
5 | HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
6 | GUO Y P, LI H Q, ZHAI T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Materials, 2017, 29(29): 1700007. |
7 | ZHANG C F, LIU Y Y, JIAO X X, et al. In situ volume change studies of lithium metal electrode under different pressure[J]. Journal of the Electrochemical Society, 2019, 166(15): A3675-A3678. |
8 | XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537. |
9 | XIAO J, LI Q Y, BI Y J, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy, 2020, 5: 561-568. |
10 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
11 | WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. NPJ Computational Materials, 2018, 4: 15. |
12 | LEUNG K, LEENHEER A. How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes[J]. The Journal of Physical Chemistry C, 2015, 119(19): 10234-10246. |
13 | LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274. |
14 | JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): 174710. |
15 | LIU F F, ZHANG Z W, YE S F, et al. Challenges and improvement strategies progress of lithium metal anode[J]. Acta Physico Chimica Sinica, 2021,37(1): 2006021. |
16 | DING F, XU W, CHEN X L, et al. Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism[J]. The Journal of Physical Chemistry C, 2014, 118(8): 4043-4049. |
17 | CHAZALVIEL J. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1990, 42(12): 7355-7367. |
18 | WANG H, YU Z, KONG X, et al. Liquid electrolyte: The nexus of practical lithium metal batteries[J]. Joule, 2022, 6(3): 588-616. |
19 | LU D P, SHAO Y Y, LOZANO T, et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Advanced Energy Materials, 2015, 5(3): 1400993. |
20 | REN X D, ZHANG Y H, ENGELHARD M H, et al. Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives[J]. ACS Energy Letters, 2018, 3(1): 14-19. |
21 | HIRANKUMAR G, MEHTA N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes[J]. Heliyon, 2018, 4(12): e00992. |
22 | XIE Y, XIANG H, SHI P, et al. Enhanced separator wettability by LiTFSI and its application for lithium metal batteries[J]. Journal of Membrane Science, 2017, 524: 315-320. |
23 | LU H, ZHU Y, YUAN Y, et al. LiFSI as a functional additive of the fluorinated electrolyte for rechargeable Li-S batteries[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(5): 5898-5906. |
24 | MIAO R R, YANG J, FENG X J, et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility[J]. Journal of Power Sources, 2014, 271: 291-297. |
25 | LI F, LIU J D, HE J, et al. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis[J]. Angewandte Chemie, 2022, 134(27): e202205091. |
26 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
27 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): 1605989. |
28 | JOTE B A, BEYENE T T, SAHALIE N A, et al. Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery[J]. Journal of Power Sources, 2020, 461: 228102. |
29 | SUN B, MINDEMARK J, EDSTRÖM K, et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics, 2014, 262: 738-742. |
30 | CHANG D R, LEE S H, KIM S W, et al. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1, 3-dioxolane for lithium-sulfur battery[J]. Journal of Power Sources, 2002, 112(2): 452-460. |
31 | NIE G M, XU J K, ZHANG S S, et al. Electrodeposition of high-quality polycarbazole films in composite electrolytes of boron trifluoride diethyl etherate and ethyl ether[J]. Journal of Applied Electrochemistry, 2006, 36(8): 937-944. |
32 | KERANGUEVEN G, COUTANCEAU C, SIBERT E, et al. Methoxy methane (dimethyl ether) as an alternative fuel for direct fuel cells[J]. Journal of Power Sources, 2006, 157(1): 318-324. |
33 | YOO D J, YANG S, YUN Y S, et al. Tuning the electron density of aromatic solvent for stable solid-electrolyte-interphase layer in carbonate-based lithium metal batteries[J]. Advanced Energy Materials, 2018, 8(33): 1802365. |
34 | CARBONE L, GOBET M, PENG J, et al. Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery[J]. Journal of Power Sources, 2015, 299: 460-464. |
35 | TAO R, BI X X, LI S, et al. Kinetics tuning the electrochemistry of lithium dendrites formation in lithium batteries through electrolytes[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7003-7008. |
36 | ZHANG G, PENG H J, ZHAO C Z, et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angewandte Chemie (International Ed in English), 2018, 57(51): 16732-16736. |
37 | SCHIELE A, BREITUNG B, HATSUKADE T, et al. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Letters, 2017, 2(10): 2228-2233. |
38 | MCMILLAN R, SLEGR H, SHU Z X, et al. Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes[J]. Journal of Power Sources, 1999, 81/82: 20-26. |
39 | WANG Z J, WANG Y Y, WU C, et al. Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes[J]. Chemical Science, 2021, 12(26): 8945-8966. |
40 | LIANG X, WEN Z Y, LIU Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte[J]. Journal of Power Sources, 2011, 196(22): 9839-9843. |
41 | LIU Y Y, LIN D C, LI Y Z, et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J]. Nature Communications, 2018, 9(1): 3656. |
42 | SHI Q W, ZHONG Y R, WU M, et al. High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22): 5676-5680. |
43 | YAN C, YAO Y X, CHEN X, et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries[J]. Angewandte Chemie, 2018, 130(43): 14251-14255. |
44 | LI S Y, ZHANG W D, WU Q, et al. Synergistic dual-additive electrolyte enables practical lithium-metal batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(35): 14935-14941. |
45 | LIU S F, JI X, PIAO N, et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes[J]. Angewandte Chemie (International Ed in English), 2021, 60(7): 3661-3671. |
46 | YANG S T, HAO M T, WANG Z, et al. 2, 2, 2-Trifluoroethyl trifluoroacetate as effective electrolyte additive for uniform Li deposition in lithium metal batteries[J]. Chemical Engineering Journal, 2022, 435: 134897. |
47 | WANG Q D, YAO Z P, ZHAO C L, et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries[J]. Nature Communications, 2020, 11(1): 4188. |
48 | ZHANG S J, YIN Z W, WU Z Y, et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure[J]. Energy Storage Materials, 2021, 40: 337-346. |
49 | KIM H J, UMIROV N, PARK J S, et al. Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries[J]. Energy Storage Materials, 2022, 46: 76-89. |
50 | ZOU Y G, CAO Z, ZHANG J L, et al. Interfacial model deciphering high-voltage electrolytes for high energy density, high safety, and fast-charging lithium-ion batteries[J]. Advanced Materials, 2021, 33(43): e2102964. |
51 | BEZABH H K, CHIU S F, HAGOS T M, et al. Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries[J]. Journal of Power Sources, 2021, 494: 229760. |
52 | SU C C, HE M N, CAI M, et al. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: 106720. |
53 | ZHANG W N, YANG T, LIAO X B, et al. All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation[J]. Energy Storage Materials, 2023, 57: 249-259. |
54 | WANG Z S, WANG H P, QI S H, et al. Structural regulation chemistry of lithium ion solvation for lithium batteries[J]. EcoMat, 2022, 4(4): e12200. |
55 | ZHANG X Q, CHEN X, HOU L P, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416. |
56 | WU J R, GAO Z Y, WANG Y, et al. Electrostatic interaction tailored anion-rich solvation sheath stabilizing high-voltage lithium metal batteries[J]. Nano-Micro Letters, 2022, 14(1): 147. |
57 | YOON B, KIM S, LEE Y M, et al. Effect of the quantity of liquid electrolyte on self-healing electrostatic shield mechanism of CsPF6 additive for Li metal anodes[J]. ACS Omega, 2019, 4(7): 11724-11727. |
58 | WANG Q, YANG C K, YANG J J, et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries[J]. Advanced Materials, 2019, 31(41): 1903248. |
59 | QI S H, WANG H P, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693. |
60 | GAO Y, YI R, LI Y C, et al. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes[J]. Journal of the American Chemical Society, 2017, 139(48): 17359-17367. |
61 | LIANG X, PANG Q, KOCHETKOV I R, et al. A facile surface chemistry route to a stabilized lithium metal anode[J]. Nature Energy, 2017, 2(9): 17119. |
62 | XU B, LIU Z, LI J, et al. Engineering interfacial adhesion for high-performance lithium metal anode[J]. Nano Energy, 2020, 67: 104242. |
63 | GU Y, WANG W W, LI Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018, 9(1): 1339. |
64 | XUE P, LIU S R, SHI X L, et al. A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes[J]. Advanced Materials, 2018, 30(44): 1804165. |
65 | WANG H S, LI Y Z, LI Y B, et al. Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy[J]. Nano Letters, 2019, 19(2): 1326-1335. |
66 | GUO F H, WU C, CHEN H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode[J]. Energy Storage Materials, 2020, 24: 635-643. |
67 | SHI H D, QIN J Q, HUANG K, et al. A two-dimensional mesoporous polypyrrole-graphene oxide heterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie (International Ed in English), 2020, 59(29): 12147-12153. |
68 | MA C W, LIU C C, ZHANG Y X, et al. A dual lithiated alloy interphase layer for high-energy–density lithium metal batteries[J]. Chemical Engineering Journal, 2022, 434: 134637. |
69 | ZHENG J M, LOCHALA J A, KWOK A, et al. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications[J]. Advanced Science, 2017, 4(8): 1700032. |
70 | LIU B, XU W, YAN P F, et al. Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes[J]. Advanced Functional Materials, 2016, 26(4): 605-613. |
71 | JIANG G X, LI F, WANG H P, et al. Perspective on high-concentration electrolytes for lithium metal batteries[J]. Small Structures, 2021, 2(5): 2000122. |
72 | XU K, LAM Y, ZHANG S S, et al. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. The Journal of Physical Chemistry C, 2007, 111(20): 7411-7421. |
73 | CHEN J, LI Q, POLLARD T P, et al. Electrolyte design for Li metal-free Li batteries[J]. Materials Today, 2020, 39: 118-126. |
74 | MAEYOSHI Y, DING D, KUBOTA M, et al. Long-term stable lithium metal anode in highly concentrated sulfolane-based electrolytes with ultrafine porous polyimide separator[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25833-25843. |
75 | LI J, DOWNIE L E, MA L, et al. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2Cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1401-A1408. |
76 | PHAM T D, BIN FAHEEM A, KIM J, et al. Practical high-voltage lithium metal batteries enabled by tuning the solvation structure in weakly solvating electrolyte[J]. Small, 2022, 18(14): e2107492. |
77 | CAO X, REN X D, ZOU L F, et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization[J]. Nature Energy, 2019, 4: 796-805. |
78 | REN X D, ZOU L F, CAO X, et al. Enabling high-voltage lithium-metal batteries under practical conditions[J]. Joule, 2019, 3(7): 1662-1676. |
79 | REN X D, CHEN S R, LEE H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries[J]. Chem, 2018, 4(8): 1877-1892. |
80 | XIA M, LIN M, LIU G P, et al. Stable cycling and fast charging of high-voltage lithium metal batteries enabled by functional solvation chemistry[J]. Chemical Engineering Journal, 2022, 442: 136351. |
81 | ZHANG G Z, DENG X L, LI J W, et al. A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries[J]. Nano Energy, 2022, 95: 107014. |
[1] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[2] | 陶致格, 朱顺兵, 侯双平, 李可, 王赫. 锂电池储能电站火灾与消防安全防护技术综合研究[J]. 储能科学与技术, 2024, 13(2): 536-545. |
[3] | 贾铭勋, 吴桐, 杨道通, 秦小茜, 刘景海, 段莉梅. 锂硫电池电解液多功能添加剂:作用机制及先进表征[J]. 储能科学与技术, 2024, 13(1): 36-47. |
[4] | 陈珊珊, 郑翔, 王若, 原铭蔓, 彭威, 鲁博明, 张光照, 王朝阳, 王军, 邓永红. 锂离子电池硅基负极电解液添加剂研究进展:挑战与展望[J]. 储能科学与技术, 2024, 13(1): 279-292. |
[5] | 李文彪, 耿海涛, 高一博, 高召顺, 王宝. Cu-In/Bi合金中亲锂位点诱导均匀锂成核实现高倍率锂金属电池[J]. 储能科学与技术, 2023, 12(9): 2735-2745. |
[6] | 韩雨, 曹盛玲, 宁靖, 王康丽, 蒋凯, 周敏. 聚合物改性锂金属电池界面策略研究综述[J]. 储能科学与技术, 2023, 12(8): 2491-2503. |
[7] | 夏恒恒, 梁鹏程, 安仲勋. 硫系电解液添加剂对镍钴锰酸锂//石墨锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2390-2400. |
[8] | 徐冲, 徐宁, 蒋志敏, 李中凯, 胡洋, 严红, 马国强. 锂离子电池产气机制及基于电解液的抑制策略[J]. 储能科学与技术, 2023, 12(7): 2119-2133. |
[9] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[10] | 黄凌锋, 韩东梅, 黄盛, 王拴紧, 肖敏, 孟跃中. 含有机硼的锂离子电池聚合物电解质的研究进展[J]. 储能科学与技术, 2023, 12(6): 1815-1830. |
[11] | 时文超, 刘宇, 张博冕, 李琪, 韩春华, 麦立强. 电解液添加剂稳定水系电池锌负极界面的研究进展[J]. 储能科学与技术, 2023, 12(5): 1589-1603. |
[12] | 余永诗, 夏先明, 黄弘扬, 姚雨, 芮先宏, 钟国彬, 苏伟, 余彦. 钠金属负极人工界面保护层的研究进展[J]. 储能科学与技术, 2023, 12(5): 1380-1391. |
[13] | 封迈, 陈楠, 陈人杰. 锂离子电池低温电解液的研究进展[J]. 储能科学与技术, 2023, 12(3): 792-807. |
[14] | 袁紫微, 林楚园, 袁紫嫣, 孙晓丽, 钱庆荣, 陈庆华, 曾令兴. 锌离子电池低温性能研究进展[J]. 储能科学与技术, 2023, 12(1): 278-298. |
[15] | 沈馨, 张睿, 赵辰孜, 武鹏, 张羽彤, 张俊东, 范丽珍, 刘全兵, 陈爱兵, 张强. 金属锂电池中力-电化学机制研究进展[J]. 储能科学与技术, 2022, 11(9): 2781-2797. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||