储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2327-2347.doi: 10.19799/j.cnki.2095-4239.2024.0323

• 低温电池专刊 • 上一篇    下一篇

用于低温锂金属电池的固态电解质技术研究进展

李想(), 刘德重(), 袁开, 陈大鹏()   

  1. 武汉船用电力推进装置研究所,湖北 武汉 430064
  • 收稿日期:2024-04-11 修回日期:2024-05-02 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 刘德重,陈大鹏 E-mail:742010446@qq.com;ldzone@outlook.com;dpchenhust@gmail.com
  • 作者简介:李想(1996—),女,博士,工程师,研究方向为化学电源,E-mail:742010446@qq.com

Solid-state electrolyte for low-temperature lithium metal batteries

Xiang LI(), Dezhong LIU(), Kai YUAN, Dapeng CHEN()   

  1. Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, Hubei, China
  • Received:2024-04-11 Revised:2024-05-02 Online:2024-07-28 Published:2024-07-23
  • Contact: Dezhong LIU, Dapeng CHEN E-mail:742010446@qq.com;ldzone@outlook.com;dpchenhust@gmail.com

摘要:

固态锂金属电池因其理论上的高能量密度和安全性成为下一代锂二次电池的重要发展方向。然而,由于低温下(≤0 ℃)固态电解质离子电导率下降、电解质/电极界面处阻抗增加,固态锂金属电池在低温下的电化学性能快速劣化,为推进固态锂金属电池的实用化进程,亟须提升固态电解质在低温下的性能。本文围绕固态电解质的先进新兴技术,从材料层面切入,对近年来受到广泛关注的固态锂金属电池在低温领域的进展进行了梳理。首先介绍了固态锂金属电池的低温化学特性和失效机制,从本体离子传输、界面电荷转移、电极表面结构、锂金属稳定性等方面进行了归纳和分析。其次根据不同类型的固体电解质,对低温运行的先进金属锂电池的设计技术进行了总结,详细介绍了无机、聚合物及复合固态电解质的设计原理、化学组成-性能关系及界面优化策略等。最后从新材料、新表征、新机理及新标准四个维度对低温固态锂金属电池的未来实用化研究方向进行了展望,为低温固态锂金属电池的合理设计提供参考。

关键词: 固态电解质, 锂金属电池, 低温, 离子电导率

Abstract:

Solid-state lithium metal batteries (SSLMBs) have emerged as a pivotal direction for developing next-generation secondary batteries, attributed to their high theoretical energy density and safety features. However, the decline in ionic conductivity of the solid electrolyte at low temperatures, coupled with increased impedance at the electrolyte/electrode interface (≤0 ℃), severely impairs the electrochemical performance of these batteries. This limitation hinders their application in military and civilian sectors. Addressing the low-temperature electrochemical performance is thus a critical technological challenge. This study concentrates on the advanced and emerging technologies in solid-state electrolytes, reviewing progress in the domain of low-temperature SSLMBs from a materials perspective. Initially, the low-temperature chemical characteristics and failure mechanisms of SSLMBs are analyzed, encompassing bulk ion transport, interface charge transfer, electrode surface structure, and lithium metal stability. Subsequently, we summarize the design technologies for advanced lithium-ion batteries operational at low temperatures according to different types of solid electrolytes. The design principles, the relationship between chemical composition and performance, and the interface optimization strategies for inorganic, polymer, and composite solid-state electrolytes are elaborated in detail. Lastly, we prospect future practical research directions for SSLMBs at low temperatures across four dimensions: new materials, new characterization techniques, new mechanisms, and new standards. This review aims to provide a comprehensive reference for the rational design of SSLMBs under low-temperature conditions.

Key words: solid state electrolytes, lithium metal batteries, low temperature, ionic conductivity

中图分类号: