1 |
HE S, JIANG S P. Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances[J]. Progress in Natural Science: Materials International, 2021, 31(3): 341-372.
|
2 |
BOLDRIN P, BRANDON N P. Progress and outlook for solid oxide fuel cells for transportation applications[J]. Nature Catalysis, 2019, 2: 571-577.
|
3 |
WILLIAMS M C, VORA S D, JESIONOWSKI G. Worldwide status of solid oxide fuel cell technology[J]. ECS Transactions, 2020, 96(1): 1-10.
|
4 |
BIAN W J, WU W, WANG B M, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604: 479-485.
|
5 |
MOGENSEN M B, CHEN M, FRANDSEN H L, et al. Reversible solid-oxide cells for clean and sustainable energy[J]. Clean Energy, 2019, 3(3): 175-201.
|
6 |
Lenser C, Udomsilp D, Menzler N H, et al. Solid oxide fuel and electrolysis cells in advanced ceramics for energy conversion and storage[M], Elsevier, 2020: 387-547.
|
7 |
UDOMSILP D, LENSER C, GUILLON O, et al. Performance benchmark of planar solid oxide cells based on material development and designs[J]. Energy Technology, 2021, 9(4): 2001062.
|
8 |
WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939.
|
9 |
ZHANG J, LENSER C, RUSSNER N, et al. Boosting intermediate temperature performance of solid oxide fuel cells via a tri-layer ceria-zirconia-ceria electrolyte[J]. Journal of the American Ceramic Society, 2023, 106(1): 93-99.
|
10 |
LI Z P, TOSHIYUKI M, AUCHTERLONIE G J, et al. Mutual diffusion ocurring at the interface between La0.6Sr0.4Co0.8Fe0.2O3 cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparation[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2772-2778.
|
11 |
FU C, GE X, CHAN S H, et al. Fabrication and characterization of anode-supported low-temperature SOFC based on Gd-doped ceria electrolyte[J]. Fuel Cells, 2012, 12(3): 450-456.
|
12 |
SıNDıRAÇ C, BÜYÜKAKSOY A, AKKURT S. Electrical properties of gadolinia doped ceria electrolytes fabricated by infiltration aided sintering[J]. Solid State Ionics, 2019, 340: 115020.
|
13 |
LYU Q Q, ZHU T L, LI Z X, et al. Enhancement of the cathode/electrolyte interface by a sintering-active barrier layer for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(40): 15238-15247.
|
14 |
LYU Q Q, ZHU T L, QU H X, et al. Lower down both ohmic and cathode polarization resistances of solid oxide fuel cell via hydrothermal modified gadolinia doped ceria barrier layer[J]. Journal of the European Ceramic Society, 2021, 41(12): 5931-5938.
|
15 |
MATSUDA J, KANAE S, KAWABATA T, et al. TEM and ETEM study on SrZrO3 formation at the LSCF/GDC/YSZ interfaces[J]. Ecs Transactions, 2017, 78(1): 993-1001.
|
16 |
SZÁSZ J, WANKMÜLLER F, WILDE V, et al. Nature and functionality of La0.58Sr0.4Co0.2Fe0.8O3- δ/Gd0.2Ce0.8O2- δ/Y0.16Zr0.84O2- δ interfaces in SOFCs[J]. Journal of the Electrochemical Society, 2018, 165(10): F898-F906.
|
17 |
WILDE V, STÖRMER H, SZÁSZ J, et al. Gd0.2Ce0.8O2 diffusion barrier layer between (La0.58Sr0.4)(Co0.2Fe0.8)O3-δ cathode and Y0.16Zr0.84O2 electrolyte for solid oxide fuel cells: Effect of barrier layer sintering temperature on microstructure[J]. ACS Applied Energy Materials, 2018, 1(12): 6790-6800.
|
18 |
MOLIN S, KARCZEWSKI J, KAMECKI B, et al. Processing of Ce0.8Gd0.2O2- δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance[J]. Journal of the European Ceramic Society, 2020, 40(15): 5626-5633.
|
19 |
KHAN M Z, SONG R H, MEHRAN M T, et al. Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review[J]. Ceramics International, 2021, 47(5): 5839-5869.
|
20 |
JANG I, KIM S, KIM C, et al. Interface engineering of yttrium stabilized zirconia/gadolinium doped ceria bi-layer electrolyte solid oxide fuel cell for boosting electrochemical performance[J]. Journal of Power Sources, 2019, 435: 226776.
|
21 |
MEHRANJANI A S, CUMMING D J, SINCLAIR D C, et al. Low-temperature co-sintering for fabrication of zirconia/ceria bi-layer electrolyte via tape casting using a Fe2O3 sintering aid[J]. Journal of the European Ceramic Society, 2017, 37(13): 3981-3993.
|
22 |
CODDET P, VULLIET J, RICHARD C, et al. Characteristics and properties of a magnetron sputtered gadolinia-doped ceria barrier layer for solid oxide electrochemical cells[J]. Surface and Coatings Technology, 2018, 339: 57-64.
|
23 |
DE VERO J C, DEVELOS-BAGARINAO K, MATSUDA H, et al. Sr and Zr transport in PLD-grown Gd-doped ceria interlayers[J]. Solid State Ionics, 2018 (314): 165-171.
|
24 |
FONSECA F C, UHLENBRUCK S, NEDÉLÉC R, et al. Properties of bias-assisted sputtered gadolinia-doped ceria interlayers for solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(6): 1599-1604.
|
25 |
MYUNG D H, HONG J, YOON K, et al. The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell[J]. Journal of Power Sources, 2012, 206: 91-96.
|
26 |
NURK G, VESTLI M, MÖLLER P, et al. Mobility of Sr in gadolinia doped ceria barrier layers prepared using spray pyrolysis, pulsed laser deposition and magnetron sputtering methods[J]. Journal of the Electrochemical Society, 2015, 163(2): F88-F96.
|
27 |
RIEGRAF M, HAN F, SATA N, et al. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide cells: Physicochemical aspects[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37239-37251.
|
28 |
赵浩宇, 吕秋秋, 程丽亚, 等. 水热原位生长制备致密氧化铈基固体氧化物燃料电池隔离层[J]. 硅酸盐学报, 2023, 51(4): 1000-1006.
|
|
ZHAO H Y, LYU Q Q, CHENG L Y, et al. In-situ hydrothermal growth of dense ceria based barrier layer for solid oxide fuel cells[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1000-1006.
|
29 |
崔同慧, 李航越, 吕泽伟, 等. 大尺寸固体氧化物燃料电池的电极过程解析方法[J]. 物理化学学报, 2022, 38(8): 48-56.
|
|
CUI T H, LI H Y, LYU Z W, et al. Identification of electrode process in large-size solid oxide fuel cell[J]. Acta Physico-Chimica Sinica, 2022, 38(8): 48-56.
|
30 |
王怡戈, 李航越, 吕泽伟, 等. 工业尺寸固体氧化物燃料电池高效及阳极安全运行条件研究[J]. 化学学报, 2022, 80(8): 1091-1101.
|
|
WANG Y G, LI H Y, LYU Z W, et al. Study of operating conditions for high efficiency and anode safety of industrial-size solid oxide fuel cell[J]. Acta Chimica Sinica, 2022, 80(8): 1091-1101.
|
31 |
LI H,LYU Z, HAN M. Robust and fast estimation of equivalent circuit model from noisy electrochemical impedance spectra[J]. Electrochimica Acta, 2022 (422): 140474.
|