储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2407-2413.doi: 10.19799/j.cnki.2095-4239.2024.0096

• 储能材料与器件 • 上一篇    下一篇

工业尺寸阳极支撑SOFC亚微米GDC隔离层的制备及性能

李宗迅1(), 吕秋秋2, 赵浩宇2, 贺建宇2, 刘阳1, 孙再洪1, 孙凯华1, 朱腾龙2()   

  1. 1.徐州华清京昆能源有限公司,江苏 徐州 221001
    2.南京理工大学化学与化工学院,江苏 南京 210094
  • 收稿日期:2024-01-29 修回日期:2024-02-15 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 朱腾龙 E-mail:lizi5210@126.com;zhutenglong@njust.edu.cn
  • 作者简介:李宗迅(1984—),男,硕士,E-mail:lizi5210@126.com
  • 基金资助:
    江苏省重点研发计划(BE2022029);中央高校基本科研业务费专项(30923010922)

Research of GDC barrier layer applications by hydrothermal insitu growth in industrial-sized SOFC

Zongxun LI1(), Qiuqiu LYU2, Haoyu ZHAO2, Jianyu HE2, Yang LIU1, Zaihong SUN1, Kaihua SUN1, Tenglong ZHU2()   

  1. 1.Xuzhou Huatsing Jingkun Energy Co. Ltd. , Xuzhou 221001, Jiangsu, China
    2.School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-01-29 Revised:2024-02-15 Online:2024-07-28 Published:2024-07-23
  • Contact: Tenglong ZHU E-mail:lizi5210@126.com;zhutenglong@njust.edu.cn

摘要:

氧化钆掺杂氧化铈(GDC)隔离层是固体氧化物燃料电池(SOFC)的重要组成部分,可以有效地阻止高性能阴极La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)和Y0.16Zr0.84O2-δ (YSZ)电解质之间的副反应。但通过传统湿法陶瓷技术制备的GDC隔离层致密度低、厚度大,不仅不能有效阻止Sr等元素的扩散,还会增大电池的欧姆阻抗;而先进镀膜技术虽可以制备致密的GDC隔离层,但其工业成本高,推广应用困难,对于非平板型电池电解质表面的适应性较差。在前期研究工作中,提出了一种制备致密GDC隔离层的新方法,通过水热原位生长在YSZ电解质表面成功生长了超薄致密的GDC隔离层,制得的阳极支撑体单电池也具有良好的电化学性能。在此基础上,将水热溶液体积放大60倍,在10 cm × 10 cm级工业尺寸阳极支撑单电池YSZ电解质表面成功制备了0.7 μm厚的连续致密GDC隔离层,构建了GDC/YSZ双层电解质,显著降低了单电池面电阻,提高了输出性能。在720 ℃,单电池在0.7 V工况的输出功率达到了61.6 W,实现了工业尺寸SOFC单电池致密GDC隔离层的低成本制备和高性能输出,验证了水热原位生长技术的工业应用可行性。

关键词: 工业尺寸SOFC, GDC隔离层, 水热原位生长, 电解质, 界面

Abstract:

Gd2O3-doped CeO2 (GDC) barrier layer is a crucial component of solid oxide fuel cells (SOFC), which effectively prevents side reactions between the high-performance cathode La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and the Y0.16Zr0.84O2-δ (YSZ) electrolyte. The traditional wet ceramic technology used to prepare the GDC barrier layer results in low densities and excessive thicknesses. This fails to adequately prevent the diffusion of Sr and other elements and increases the ohmic impedance of the cell. Conversely, advanced coating technologies can produce ultrathin, dense GDC isolation layers; however, these methods incur high costs and are challenging to implement on nonflat plate-type cell surfaces. Previous research introduced a novel approach for creating dense GDC barrier layers through hydrothermal insitu growth. This method successfully yielded an ultrathin, dense GDC barrier layer on the YSZ electrolyte surface of an anode-supported cell, considerably enhancing the electrochemical performance of the cell. Considerably, the hydrothermal insitu growth technique was scaled up by 60 times, enabling the preparation of a continuous, 0.7 μm thick GDC barrier layer on a 10 cm × 10 cm industrial-sized anode-supported single cell. This development led to the construction of a GDC/YSZ bilayer electrolyte, substantially reducing the interfacial resistance of the cell and boosting its output performance. At 720 ℃ and under a working condition of 0.7 V, the output power of the single cell reached 61.6 W. This study demonstrates the potential for low-cost production of dense GDC barrier layers in industrial-sized SOFC single cells and confirms the viability of hydrothermal in situ growth technology for industrial applications.

Key words: industrial-sized SOFC, GDC barrier layer, hydrothermal in-situ growth, electrolytes, interface

中图分类号: