1 |
HUANG S, FAN F, LI J, et al. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries[J]. Acta Materialia, 2013, 61(12): 4354-4364. DOI: 10.1016/j.actamat. 2013.04.007.
|
2 |
OTT J, VÖLKER B, GAN Y X, et al. A micromechanical model for effective conductivity in granular electrode structures[J]. Acta Mechanica Sinica, 2013, 29(5): 682-698. DOI: 10.1007/s10409-013-0070-x.
|
3 |
KESPE M, NIRSCHL H. Numerical simulation of lithium-ion battery performance considering electrode microstructure[J]. International Journal of Energy Research, 2015, 39(15): 2062-2074. DOI: 10.1002/er.3459.
|
4 |
JIANG Z Y, QU Z G, ZHOU L. Lattice Boltzmann simulation of ion and electron transport during the discharge process in a randomly reconstructed porous electrode of a lithium-ion battery[J]. International Journal of Heat and Mass Transfer, 2018, 123: 500-513. DOI: 10.1016/j.ijheatmasstransfer.2018.03.004.
|
5 |
LIN C, XING J L, TANG A H. Failure analysis of electrochemical-mechanical interactions within nanowire electrode materials of lithium-ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7889-7895. DOI: 10.1166/jnn.2018.15546.
|
6 |
WESTHOFF D, DANNER T, HEIN S, et al. Analysis of microstructural effects in multi-layer lithium-ion battery cathodes[J]. Materials Characterization, 2019, 151: 166-174. DOI: 10.1016/j.matchar.2019.02.031.
|
7 |
BECKER V, BIRKHOLZ O, GAN Y X, et al. Modeling the influence of particle shape on mechanical compression and effective transport properties in granular lithium-ion battery electrodes[J]. Energy Technology, 2021, 9(6): 2000886. DOI: 10.1002/ente.202000886.
|
8 |
LEE Y K, PARK J, SHIN H. Multi-scale analysis of cathode microstructural effects on electrochemical and stress responses of lithium-ion batteries[J]. Journal of Power Sources, 2022, 548: 232050. DOI: 10.1016/j.jpowsour.2022.232050.
|
9 |
GÜNTHER T, SCHREINER D, METKAR A, et al. Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production[J]. Energy Technology, 2020, 8(2): 1900026. DOI: 10.1002/ente.201900026.
|
10 |
BILLOT N, GÜNTHER T, SCHREINER D, et al. Investigation of the adhesion strength along the electrode manufacturing process for improved lithium-ion anodes[J]. Energy Technology, 2020, 8(2): 1801136. DOI: 10.1002/ente.201801136.
|
11 |
ACHARYA T, CHAUPATNAIK A, PATHAK A, et al. Effect of calendering on rate performance of Li4Ti5O12 anodes for lithium-ion batteries[J]. Journal of Electroceramics, 2020, 45(3): 85-92. DOI: 10.1007/s10832-020-00227-2.
|
12 |
PRIMO E N, CHOUCHANE M, TOUZIN M, et al. Understanding the calendering processability of Li(Ni0.33Mn0.33Co0.33)O2-based cathodes[J]. Journal of Power Sources, 2021, 488: 229361. DOI: 10.1016/j.jpowsour.2020.229361.
|
13 |
LIPPKE M, MEISTER J, SCHILDE C, et al. Preheating of lithium-ion battery electrodes as basis for heated calendering—A numerical approach[J]. Processes, 2022, 10(8): 1667. DOI: 10.3390/pr10081667.
|
14 |
SIM R, LEE S, LI W D, et al. Influence of calendering on the electrochemical performance of LiNi0.9Mn0.05Al0.05O2 cathodes in lithium-ion cells[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42898-42908. DOI: 10.1021/acsami.1c12543.
|
15 |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. DOI: 10.1680/geot.1979.29.1.47.
|
16 |
SANGRÓS GIMÉNEZ C, FINKE B, SCHILDE C, et al. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method[J]. Powder Technology, 2019, 349: 1-11. DOI: 10.1016/j.powtec. 2019.03.020.
|
17 |
GE R H, CUMMING D J, SMITH R M. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography—The effect of calendering conditions[J]. Powder Technology, 2022, 403: 117366. DOI: 10.1016/j.powtec. 2022.117366.
|
18 |
ZHANG J P, HUANG H G, SUN J N. Investigation on mechanical and microstructural evolution of lithium-ion battery electrode during the calendering process[J]. Powder Technology, 2022, 409: 117828. DOI: 10.1016/j.powtec.2022.117828.
|
19 |
LUNDKVIST A, LARSSON P L, OLSSON E. A discrete element analysis of the mechanical behaviour of a lithium-ion battery electrode active layer[J]. Powder Technology, 2023, 425: 118574. DOI: 10.1016/j.powtec.2023.118574.
|
20 |
THAKUR S C, MORRISSEY J P, SUN J, et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model[J]. Granular Matter, 2014, 16(3): 383-400. DOI: 10.1007/s10035-014-0506-4.
|