1 |
LIU H K, GUO Z P, WANG J Z, et al. Si-based anode materials for lithium rechargeable batteries[J]. Journal of Materials Chemistry, 2010, 20(45): 10055-10057. DOI: 10.1039/C0JM01702G.
|
2 |
CHEN Y Q, LUO Y, ZHANG H Z, et al. The challenge of lithium metal anodes for practical applications[J]. Small Methods, 2019, 3(7): 1800551. DOI: 10.1002/smtd.201800551.
|
3 |
XU J Q, THOMAS H R, FRANCIS R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527. DOI: 10.1016/j.jpowsour.2007.11.074.
|
4 |
YANG J, ZHOU X Y, LI J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2012, 135(2/3): 445-450. DOI: 10.1016/j.matchemphys.2012.05.006.
|
5 |
周军华, 罗飞, 褚赓, 等. 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-582. DOI: 10.19799/j.cnki.2095-4239.2020.0012.
|
|
ZHOU J H, LUO F, CHU G, et al. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. DOI: 10.19799/j.cnki.2095-4239.2020.0012.
|
6 |
JI L W, LIN Z, ALCOUTLABI M, et al. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(8): 2682-2699. DOI: 10.1039/C0EE00699H.
|
7 |
肖钰, 梁晓杜, 廖丽霞, 等. 锂离子电池硅负极材料性能改进的研究进展[J]. 化工新型材料, 2020, 48(4): 1-4. DOI: 10.19817/j.cnki.issn1006-3536.2020.04.001.
|
|
XIAO Y, LIANG X D, LIAO L X, et al. Research progress on improvement of silicon cathode material for lithium ion battery[J]. New Chemical Materials, 2020, 48(4): 1-4. DOI: 10.19817/j.cnki.issn1006-3536.2020.04.001.
|
8 |
MCDOWELL M T, RYU I, LEE S W, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy[J]. Advanced Materials, 2012, 24(45): 6034-6041. DOI: 10.1002/adma.201202744.
|
9 |
余向南, 马天翼, 李慧玉, 等. 硅-改性多壁纳米碳管柔性复合电极的制备和性能研究[J]. 储能科学与技术, 2018, 7(3): 450-458. DOI: 10.12028/j.issn.2095-4239.2018.0047.
|
|
YU X N, MA T Y, LI H Y, et al. Preparation and properties of Si-PDCNT flexible composite anode[J]. Energy Storage Science and Technology, 2018, 7(3): 450-458. DOI: 10.12028/j.issn.2095-4239.2018.0047.
|
10 |
郝胐, 王俊明, 董春伟, 等. 中空三维结构的硅碳负极的构筑及性能研究[J]. 储能科学与技术, 2024, 13(1): 325-332. DOI: 10.19799/j.cnki.2095-4239.2023.0746.
|
|
HAO F, WANG J M, DONG C W, et al. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure[J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. DOI: 10.19799/j.cnki.2095-4239.2023.0746.
|
11 |
SETHURAMAN V A, NGUYEN A, CHON M J, et al. Stress evolution in composite silicon electrodes during lithiation/delithiation[J]. Journal of the Electrochemical Society, 2013, 160(4): A739-A746. DOI: 10.1149/2.021306jes.
|
12 |
MUSSA A S, KLETT M, LINDBERGH G, et al. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells[J]. Journal of Power Sources, 2018, 385: 18-26. DOI: 10.1016/j.jpowsour.2018.03.020.
|
13 |
CUI J, CHEN X, ZHOU Z, et al. Effect of continuous pressures on electrochemical performance of Si anodes[J]. Materials Today Energy, 2021, 20: 100632. DOI: 10.1016/j.mtener.2020.100632.
|
14 |
ZHANG K, ZHANG Y W, ZHOU J W, et al. A stress-based charging protocol for silicon anode in lithium-ion battery: Theoretical and experimental studies [J]. Journal of Energy Storage, 2020, 32: 101765. DOI: 10.1016/j.est.2020.101765.
|
15 |
WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. DOI: 10.1016/j.nantod.2012.08.004.
|
16 |
MCDOWELL M T, LEE S W, NIX W D, et al. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Advanced Materials, 2013, 25(36): 4966-4985. DOI: 10.1002/adma.201301795.
|
17 |
ZHANG K, ZHOU J W, TIAN T, et al. Cycling-induced damage of silicon-based lithium-ion batteries: Modeling and experimental validation[J]. International Journal of Fatigue, 2023, 172: 107660. DOI: 10.1016/j.ijfatigue.2023.107660.
|