储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2864-2870.doi: 10.19799/j.cnki.2095-4239.2024.0513

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响

李亚捷1(), 王依平1, 陈斌1, 林海龙1, 张更2(), 施思齐1,3()   

  1. 1.上海大学材料科学与工程学院,上海 200444
    2.湖南理工学院机械工程学院,湖南 岳阳 414006
    3.上海大学材料基因组工程研究院,上海 200444
  • 收稿日期:2024-06-06 修回日期:2024-06-26 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 张更,施思齐 E-mail:liyajiejuly@shu.edu.cn;geng.zhang@kaust.edu.sa;sqshi@shu.edu.cn
  • 作者简介:李亚捷(1990—),女,博士,研究方向为电池安全性能及相场模拟研究,E-mail:liyajiejuly@shu.edu.cn
  • 基金资助:
    国家自然科学基金(52102280);国家重点研发计划(2021YFB3802104)

Machine learning-assisted phase-field simulation for predicting the impact of lithium-ion transport parameters on maximum battery dendrite height and space utilization rate

Yajie LI1(), Yiping WANG1, Bin CHEN1, Hailong LIN1, Geng ZHANG2(), Siqi SHI1,3()   

  1. 1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
    2.College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
    3.Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • Received:2024-06-06 Revised:2024-06-26 Online:2024-09-28 Published:2024-09-20
  • Contact: Geng ZHANG, Siqi SHI E-mail:liyajiejuly@shu.edu.cn;geng.zhang@kaust.edu.sa;sqshi@shu.edu.cn

摘要:

在锂基电池反复充放电的过程中,锂离子在负极表面的不均匀沉积会导致不可控的枝晶生长,进而严重影响电池的安全性能。相场模拟方法是描述和预测枝晶生长的有力手段,然而求解描述场变量演化的偏微分方程组对计算资源的要求较高。机器学习因能快速拟合历史数据中的潜在规律以实现材料性能的预测,已被广泛用于电池材料性能预测与筛选、电池健康状况评估等方面。本文以锂离子输运参数对电池枝晶形貌的影响为例,通过相场模拟收集不同锂离子扩散系数与离子电导率对应的枝晶图像,基于这些数据训练机器学习模型,进而预测给定离子输运参数所对应的枝晶描述因子(枝晶最大生长高度和空间利用率)。结果表明K-最邻近(K-nearest neighbors)模型可以较为精准地刻画离子输运参数与两种枝晶描述因子之间的联系(R2为0.995和0.992),同时机器学习模型对锂离子输运参数与枝晶描述因子间构效关系的挖掘方式及枝晶描述因子的区间范围都会影响预测结果的准确性。本文能够有效降低计算成本,有助于指导高效地设计具有枝晶抑制性能的电池材料体系。

关键词: 扩散系数, 离子电导率, 枝晶描述因子, 相场模拟, 机器学习

Abstract:

During the repeated charging and discharging processes of lithium-ion batteries, the uneven Li+ deposition leads to uncontrollable dendrite growth on the electrode surface, severely affecting the battery's safety use. A phase-field simulation is a powerful tool for describing and predicting dendrite growth, while solving partial differential equations that describe the evolution of field variables requires high computational resources. Machine learning approaches that can quickly fit the underlying laws in historical data to predict material performance have been widely used in battery materials. This paper focuses on the effects of lithium-ion transport parameters on dendrite morphology. The corresponding dendrite images were first obtained from the phase-field simulation. The machine learning models were then trained to predict the dendrite metrics (maximum dendrite height and space utilization rate). The results show that the K-nearest neighbors model can accurately capture the relationship between lithium-ion transport parameters and dendrite metrics (R2 = 0.995 and 0.992). Meanwhile, the choice of machine learning models and the intervals of dendrite metrics all affect the accuracy of the results. This study can effectively save computational costs and contribute to the effective design of battery materials with dendrite suppression performance.

Key words: diffusion coefficient, ionic conductivity, dendrite metrics, phase-field simulation, machine learning

中图分类号: