1 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. DOI: 10.1021/acs.chemrev.7b00115.
|
2 |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. DOI: 10.1016/j.jpowsour.2015.09.055.
|
3 |
LIU Z, LI Y S, JI Y Z, et al. Dendrite-free lithium based on lessons learned from lithium and magnesium electrodeposition morphology simulations[J]. Cell Reports Physical Science, 2021, 2(1): 100294. DOI: 10.1016/j.xcrp.2020.100294.
|
4 |
HONG Z J, VISWANATHAN V. Phase-field simulations of lithium dendrite growth with open-source software[J]. ACS Energy Letters, 2018, 3(7): 1737-1743. DOI: 10.1021/acsenergylett.8b01009.
|
5 |
SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): 018212. DOI: 10.1088/1674-1056/25/1/018212.
|
6 |
施思齐. 电化学储能中的计算、建模与仿真[M]. 北京: 化学工业出版社, 2023: 11.
|
|
SHI S Q. Calculation, modeling and simulation in electrochemical energy storage[M]. Beijing: Chemical Industry Press, 2023: 11.
|
7 |
LIANG L Y, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 86(5 Pt 1): 051609. DOI: 10.1103/PhysRevE.86.051609.
|
8 |
JÄCKLE M, GROß A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth[J]. The Journal of Chemical Physics, 2014, 141(17): 174710. DOI: 10.1063/1.4901055.
|
9 |
JING H X, XING H, DONG X L, et al. Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition[J]. Journal of the Electrochemical Society, 2022, 169(3): 032511. DOI: 10.1149/1945-7111/ac5fed.
|
10 |
WANG Q, ZHANG G, LI Y J, et al. Application of phase-field method in rechargeable batteries[J]. NPJ Computational Materials, 2020, 6: 176. DOI: 10.1038/s41524-020-00445-w.
|
11 |
李亚捷, 张更, 沙立婷, 等. 可充电电池中枝晶问题的相场模拟[J]. 储能科学与技术, 2022, 11(3): 929-938. DOI: 10.19799/j.cnki.2095-4239.2022.0049.
|
|
LI Y J, ZHANG G, SHA L T, et al. Phase-field simulation of dendrite growth in rechargeable batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 929-938. DOI: 10.19799/j.cnki.2095-4239.2022.0049.
|
12 |
李亚捷, 施思齐, 张更, 等. 锂离子电池隔膜结构与枝晶形貌分析软件: 2022SR0147340[P]. 2022.
|
13 |
李亚捷, 施思齐, 张更, 等. 基于相场模型模拟电池枝晶生长计算程序: 2022SR0147443[P]. 2022.
|
14 |
LI Y J, ZHANG G, CHEN B, et al. Understanding the separator pore size inhibition effect on lithium dendrite via phase-field simulations[J]. Chinese Chemical Letters, 2022, 33(6): 3287-3290. DOI: 10.1016/j.cclet.2022.03.065.
|
15 |
LI Y J, SHA L T, ZHANG G, et al. Phase-field simulation tending to depict practical electrodeposition process in lithium-based batteries[J]. Chinese Chemical Letters, 2023, 34(2): 107993. DOI: 10.1016/j.cclet.2022.107993.
|
16 |
LI Y J, CHEN B, WANG Y P, et al. Inhibiting dendrite growth by customizing electrolyte or separator to achieve anisotropic lithium-ion transport: A phase-field study[J]. Acta Physico Chimica Sinica, 2023: 2305053. DOI: 10.3866/pku.whxb202305053.
|
17 |
LI Y J, ZHAO W, ZHANG G, et al. Unified picture on temperature dependence of lithium dendrite growth via phase-field simulation[J]. Energy Material Advances, 2023, 4: DOI: 10.34133/energymatadv.0053.
|
18 |
张更, 王巧, 沙立婷, 等. 相场模型及其在电化学储能材料中的应用[J]. 物理学报, 2020, 69(22): 27-39. DOI: 10.7498/aps.69.20201411.
|
|
ZHANG G, WANG Q, SHA L T, et al. Phase-field model and its application in electrochemical energy storage materials[J]. Acta Physica Sinica, 2020, 69(22): 27-39. DOI: 10.7498/aps.69.20201411.
|
19 |
LI Y J, SHA L T, LV P L, et al. Influences of separator thickness and surface coating on lithium dendrite growth: A phase-field study[J]. Materials, 2022, 15(22): 7912. DOI: 10.3390/ma15227912.
|
20 |
HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019. DOI: 10.1021/acsenergylett.9b00433.
|
21 |
GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: 109919. DOI: 10.1016/j.commatsci. 2020.109919.
|
22 |
YANG C, LI S L, WANG X T, et al. Phase-field simulation of multi-phase interactions in Fe-C peritectic solidification[J]. Computational Materials Science, 2020, 171: 109220. DOI: 10.1016/j.commatsci.2019.109220.
|
23 |
LIU Y, GUO B R, ZOU X X, et al. Machine learning assisted materials design and discovery for rechargeable batteries[J]. Energy Storage Materials, 2020, 31: 434-450. DOI: 10.1016/j.ensm.2020.06.033.
|
24 |
LIU Y, ZHAO T L, JU W W, et al. Materials discovery and design using machine learning[J]. Journal of Materiomics, 2017, 3(3): 159-177. DOI: 10.1016/j.jmat.2017.08.002.
|
25 |
施思齐, 涂章伟, 邹欣欣, 等. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051.
|
|
SHI S Q, TU Z W, ZOU X X, et al. Applying data-driven machine learning to studying electrochemical energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051.
|
26 |
LAMA B, SMIRNOVA A L, PAUDEL T R. Enhanced Li-ion diffusivity of LiFePO4 by Ru doping: Ab initio and machine learning force field results[J]. ACS Applied Energy Materials, 2023, 6(20): 10424-10431. DOI: 10.1021/acsaem.3c01429.
|
27 |
MA Y, HAN S X, SUN Y, et al. Improving ionic conductivity of garnet solid-state electrolytes using Gradient boosting regression optimized machine learning[J]. Journal of Power Sources, 2024, 604: 234492. DOI: 10.1016/j.jpowsour.2024.234492.
|
28 |
DHAKAL P, SHAH J K. A generalized machine learning model for predicting ionic conductivity of ionic liquids[J]. Molecular Systems Design & Engineering, 2022, 7(10): 1344-1353. DOI: 10.1039/D2ME00046F.
|
29 |
JAGAD H D, FU J T, FULLERTON W R, et al. A physics-based model assisted by machine-learning for sodium-ion batteries with both liquid and solid electrolytes[J]. Journal of the Electrochemical Society, 2024, 171(6): 060516. DOI: 10.1149/1945-7111/ad4a11.
|
30 |
LIU Y, WU J M, AVDEEV M, et al. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties[J]. Advanced Theory and Simulations, 2020, 3(2): DOI: 10.1002/adts.201900215.
|
31 |
LIU Y, GE X Y, YANG Z W, et al. An automatic descriptors recognizer customized for materials science literature[J]. Journal of Power Sources, 2022, 545: 231946. DOI: 10.1016/j.jpowsour.2022.231946.
|
32 |
刘悦, 邹欣欣, 杨正伟, 等. 材料领域知识嵌入的机器学习[J]. 硅酸盐学报, 2022, 50(3): 863-876. DOI: 10.14062/j.issn.0454-5648.20220093.
|
|
LIU Y, ZOU X X, YANG Z W, et al. Machine learning embedded with materials domain knowledge[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 863-876. DOI: 10.14062/j.issn.0454-5648.20220093.
|