储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 2839-2863.doi: 10.19799/j.cnki.2095-4239.2024.0585
• AI辅助先进电池设计与应用专刊 • 下一篇
邢瑞鹤1,2(), 翁素婷1, 李叶晶1, 张佳怡1,2, 张浩4, 王雪锋1,2,3()
收稿日期:
2024-06-27
修回日期:
2024-07-17
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
王雪锋
E-mail:rhxing0322@gmail.com;wxf@iphy.ac.cn
作者简介:
邢瑞鹤(2002—),男,硕士研究生,研究方向为基于冷冻电镜电池材料的结构表征和机理探索,E-mail:rhxing0322@gmail.com;
基金资助:
Ruihe XING1,2(), Suting WENG1, Yejing LI1, Jiayi ZHANG1,2, Hao ZHANG4, Xuefeng WANG1,2,3()
Received:
2024-06-27
Revised:
2024-07-17
Online:
2024-09-28
Published:
2024-09-20
Contact:
Xuefeng WANG
E-mail:rhxing0322@gmail.com;wxf@iphy.ac.cn
摘要:
随着锂离子电池(LIBs)的快速发展,传统实验方法在处理复杂数据和优化设计时面临挑战。近年来,人工智能(AI)技术在数据处理、模式识别和预测分析方面展现出巨大潜力,为LIBs的研发提供了新的解决方案。本文综述了AI在锂离子电池材料表征中的应用,包括谱学和成像表征技术。AI通过特征提取和数据分析,提高了谱学分析的准确性和效率;结合先进成像技术,研究者能够以前所未有的精度和速度探索材料内部结构。AI在图像识别、分类和分割中的应用,进一步提升了数据处理的效率和准确性。未来,AI将通过技术创新和跨学科合作,在电池材料科学领域发挥重要作用,推动高性能电池的研发和应用。
中图分类号:
邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863.
Ruihe XING, Suting WENG, Yejing LI, Jiayi ZHANG, Hao ZHANG, Xuefeng WANG. AI-assisted battery material characterization and data analysis[J]. Energy Storage Science and Technology, 2024, 13(9): 2839-2863.
表1
常用于电池和材料领域的机器学习模型"
机器学习模型 | 特点或应用实例 | 相关文献 |
---|---|---|
卷积神经网络(CNN) | 适合于图像模式识别,应用于管理大量表征数据以快速和自动识别材料组成和相图 | [ |
人工神经网络(ANN) | 用于对大量晶体结构的研究,应用于原子构型采样和学习物理电位 | [ |
深度神经网络(DNN) | 适合非线性函数拟合特征提取,可用于学习编码器和解码器及预测电极特性 | [ |
递归神经网络(RNN) | 深度学习主要框架之一,主要是将上一次迭代的输出作为当前迭代的输入,可用于电池状态预测 | [ |
自动编码器(AE) | 通过逐层的无监督学习先将输入数据进行表征的压缩,应用于降维和特征提取 | [ |
生成式对抗网络(GAN) | 生成器按要求生成样本并通过鉴别器来区分真假,迫使生成器生成更真实的样本,应用于实现X射线断层扫描数据和实验图像的重建 | [ |
支持向量机(SVM) | 能够处理非线性动态问题中非线性特征的相互作用,提高泛化能力 | [ |
长短期记忆网络(LSTM) | 适合于与时间相关的数据,常用于电池单元状态估计 | [ |
表2
常用谱学表征方法及其应用实例"
谱学种类 | 谱学表征方法 | 功能简介 | 应用实例简介 |
---|---|---|---|
衍射谱 | X射线衍射(XRD) | 确定材料的晶体结构、相组成、晶粒尺寸和应力应变状态 | 研究电极材料在充放电过程中的相变行为 |
电子衍射(ED) | 提供材料的高分辨率的晶体结构和原子排列信息 | 分析材料的晶格缺陷和界面结构 | |
中子衍射(ND) | 对轻元素(如锂、氢等)更敏感,提供轨迹信息 | 研究充放电过程中的嵌入和脱出机制 | |
振动谱 | 傅里叶变换红外光谱(FT-IR) | 提供化学键的形成和断裂、表面官能团的变化、界面反应产物的信息 | 分析电极材料的组成、界面反应及电解液的分解产物 |
拉曼光谱(Raman spectrocopy) | 检测材料中的化学键和分子振动 | 识别结构变化和反应产物,电解液溶剂化结构 | |
能谱 | 飞行时间二次离子质谱(ToF-SIMS) | 分析样品表面释放的离子,提供化学组成和三维分布信息 | 分析材料中各层界面的化学成分和结构 |
X射线光电子能谱(XPS) | 提供样品表面的元素组成、化学态和相对浓度等信息 | 分析化合物的化学态、研究电极表面在不同充放电状态下的变化 | |
电子能量损失谱(EELS) | 提供局部的化学信息和电子结构 | 常与透射电子显微镜(TEM)结合使用,分析材料中的元素分布和氧化态 | |
X射线吸收谱(XAS) | 提供材料的电子结构和局部环境变化 | 锂和钠离子电池正极材料中的氧化还原反应和结构演变 | |
X射线荧光光谱(XRF) | 提供高精度的元素分布信息 | 测量电极内部溶液相浓度梯度等 | |
能量弥散X射线谱(EDS) | 确定元素类型与浓度 | 识别元素种类,分析元素含量和分布 | |
其他 | 核磁共振(NMR) | 化学状态分析 | 分析材料中的化学环境和结构,可以研究电解液中溶剂和添加剂的分子结构和相互作用 |
1 | LIU X H, ZHANG L S, YU H Q, et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle[J]. Advanced Energy Materials, 2022, 12(33): 2200889. DOI: 10.1002/aenm.202200889. |
2 | FINEGAN D P, SQUIRES I, DAHARI A, et al. Machine-learning-driven advanced characterization of battery electrodes[J]. ACS Energy Letters, 2022, 7(12): 4368-4378. DOI: 10.1021/acsenergylett.2c01996. |
3 | JI S L, ZHU J X, YANG Y X, et al. Data-driven battery characterization and prognosis: Recent progress, challenges, and prospects[J]. Small Methods, 2024, 8(7): 2301021. DOI: 10.1002/smtd.202301021. |
4 | 施思齐, 涂章伟, 邹欣欣, 等. 数据驱动的机器学习在电化学储能材料研究中的应用[J]. 储能科学与技术, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051. |
SHI S Q, TU Z W, ZOU X X, et al. Applying data-driven machine learning to studying electrochemical energy storage materials[J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. DOI: 10.19799/j.cnki.2095-4239.2022.0051. | |
5 | SCHARF J, CHOUCHANE M, FINEGAN D P, et al. Bridging nano- and microscale X-ray tomography for battery research by leveraging artificial intelligence[J]. Nature Nanotechnology, 2022, 17(5): 446-459. DOI: 10.1038/s41565-022-01081-9. |
6 | ZHENG X Y, KANKANALLU V R, LO C A, et al. Deep learning enhanced super-resolution X-ray fluorescence microscopy by a dual-branch network[J]. Optica, 2024, 11(2): 146. DOI: 10.1364/OPTICA.503398. |
7 | BASAK S, DZIECIOL K, DURMUS Y E, et al. Characterizing battery materials and electrodes via in situ/operando transmission electron microscopy[J]. 2022, 3(3): 031303. DOI: 10.1063/5.0075430. |
8 | WU L L, BAK S, SHIN Y, et al. Resolution-enhanced X-ray fluorescence microscopy via deep residual networks[J]. NPJ Computational Materials, 2023, 9: 43. DOI: 10.1038/s41524-023-00995-9. |
9 | TAJIMA S, UMEHARA M, TAKECHI K. Charge-discharge properties of LiMn2O4-group positive electrode active materials for lithium-ion batteries using high-throughput experimental screening and machine learning models[J]. Science and Technology of Advanced Materials: Methods, 2023, 3(1): 2260299. DOI: 10.1080/27660400.2023.2260299. |
10 | KHAN A, LEE C H, HUANG P Y, et al. Leveraging generative adversarial networks to create realistic scanning transmission electron microscopy images[J]. NPJ Computational Materials, 2023, 9: 85. DOI: 10.1038/s41524-023-01042-3. |
11 | YANXON H, WENG J, PARRAGA H, et al. Artifact identification in X-ray diffraction data using machine learning methods[J]. Journal of Synchrotron Radiation, 2023, 30(1): 137-146. DOI: 10.1107/s1600577522011274. |
124 | DIXIT M B, VERMA A, ZAMAN W, et al. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning[J]. ACS Applied Energy Materials, 2020, 3(10): 9534-9542. DOI: 10.1021/acsaem.0c02053. |
125 | MÜLLER S, SAUTER C, SHUNMUGASUNDARAM R, et al. Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes[J]. Nature Communications, 2021, 12(1): 6205. DOI: 10.1038/s41467-021-26480-9. |
126 | TIAN F, BEN L B, YU H L, et al. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. DOI: 10.1016/j.nanoen.2022.107222. |
127 | BAILEY J J, WADE A, BOYCE A M, et al. Quantitative assessment of machine-learning segmentation of battery electrode materials for active material quantification[J]. Journal of Power Sources, 2023, 557: 232503. DOI: 10.1016/j.jpowsour.2022.232503. |
128 | LIN R Q, ZHANG R, WANG C Y, et al. TEMImageNet training library and AtomSegNet deep-learning models for high-precision atom segmentation, localization, denoising, and deblurring of atomic-resolution images[J]. Scientific Reports, 2021, 11(1): 5386. DOI: 10.1038/s41598-021-84499-w. |
129 | WANG C Y, HAN L L, ZHANG R, et al. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries[J]. Matter, 2021, 4(6): 2013-2026. DOI: 10.1016/j.matt.2021.03.012. |
130 | WANG C Y, WANG X L, ZOU P C, et al. Direct observation of chemomechanical stress-induced phase transformation in high-Ni layered cathodes for lithium-ion batteries[J]. Matter, 2023, 6(4): 1265-1277. DOI: 10.1016/j.matt.2023.02.001. |
131 | FURAT O, FINEGAN D P, DIERCKS D, et al. Mapping the architecture of single lithium ion electrode particles in 3D, using electron backscatter diffraction and machine learning segmentation[J]. Journal of Power Sources, 2021, 483: 229148. DOI: 10.1016/j.jpowsour.2020.229148. |
132 | CHOUHAN S, RASTI B, GHAMISI P, et al. Hyperspectral unmixing using convolutional autoencoder for metal detection in lithium-ion battery recycling applications[C]//2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). September 13-16, 2022, Rome, Italy. IEEE, 2022: 1-5. DOI: 10.1109/WHISPERS56178.2022.9955076. |
133 | CHEN L, CIKALOVA U, MUCH S, et al. Artificial intelligence - A solution for inline characterization of Li-ion batteries[C/OL]. International Conference on NDE 4.0, 24-27 October 2022 in Berlin, Germany. [2024-01-05].https://www.ndt.net/?id=27662. |
12 | HUJSAK K A, ROTH E W, KELLOGG W, et al. High speed/low dose analytical electron microscopy with dynamic sampling[J]. Micron, 2018, 108: 31-40. DOI: 10.1016/j.micron.2018.03.001. |
13 | ZHU D, WANG C Y, ZOU P C, et al. Deep-learning aided atomic-scale phase segmentation toward diagnosing complex oxide cathodes for lithium-ion batteries[J]. Nano Letters, 2023, 23(17): 8272-8279. DOI: 10.1021/acs.nanolett.3c02441. |
14 | SU C, URBAN F. Carbon neutral China by 2060: The role of clean heating systems[J]. Energies, 2021, 14(22): 7461. DOI: 10.3390/en14227461. |
15 | DENG L, LI X. Machine learning paradigms for speech recognition: An overview[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 1060-1089. DOI: 10.1109/TASL.2013.2244083. |
16 | WAN NURAZWIN SYAZWANI R, MUHAMMAD ASRAF H, MEGAT SYAHIRUL AMIN M A, et al. Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning[J]. Alexandria Engineering Journal, 2022, 61(2): 1265-1276. DOI: 10.1016/j.aej.2021.06.053. |
17 | WANG J, KANG Z J, LIU Y D, et al. Identification of immune cell infiltration and diagnostic biomarkers in unstable atherosclerotic plaques by integrated bioinformatics analysis and machine learning[J]. Frontiers in Immunology, 2022, 13: 956078. DOI: 10.3389/fimmu.2022.956078. |
18 | XU Y W, KOHTZ S, BOAKYE J, et al. Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges[J]. Reliability Engineering & System Safety, 2023, 230: 108900. DOI: 10.1016/j.ress.2022.108900. |
19 | FANNI S C, FEBI M, AGHAKHANYAN G, et al. Natural language processing[M]//KLONTZAS M E, FANNI S C, NERI E, eds. Imaging Informatics for Healthcare Professionals. Cham: Springer International Publishing, 2023: 87-99. DOI: 10.1007/978-3-031-25928-9_5. |
20 | BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. DOI: 10.1038/s41586-018-0337-2. |
21 | RUSSELL S J, NORVIG P. Artificial intelligence : A modern approach[M]. Pearson, 2016. |
22 | LOMBARDO T, DUQUESNOY M, EL-BOUYSIDY H, et al. Artificial intelligence applied to battery research: Hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. DOI: 10.1021/acs.chemrev.1c00108. |
23 | DING G L, LIU Y T, ZHANG R, et al. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond[J]. Scientific Reports, 2019, 9(1): 12803. DOI: 10.1038/s41598-019-49267-x. |
24 | LIU Z C, BICER T, KETTIMUTHU R, et al. TomoGAN: Low-dose synchrotron X-ray tomography with generative adversarial networks: Discussion[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2020, 37(3): 422-434. DOI: 10.1364/JOSAA.375595. |
25 | WEI J, CHU X, SUN X Y, et al. Machine learning in materials science[J]. InfoMat, 2019, 1(3): 338-358. DOI: 10.1002/inf2.12028. |
26 | CHEN C, ZUO Y X, YE W K, et al. A critical review of machine learning of energy materials[J]. Advanced Energy Materials, 2020, 10(8): 1903242. DOI: 10.1002/aenm.201903242. |
27 | 牛程程, 李少波, 胡建军, 等. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108. DOI: 10.11896/cldb.19110175. |
NIU C C, LI S B, HU J J, et al. Application of machine learning in material informatics: A survey[J]. Materials Reports, 2020, 34(23): 23100-23108. DOI: 10.11896/cldb.19110175. | |
28 | ZHAO Q, AVDEEV M, CHEN L Q, et al. Machine learning prediction of activation energy in cubic Li-argyrodites with hierarchically encoding crystal structure-based (HECS) descriptors[J]. Science Bulletin, 2021, 66(14): 1401-1408. DOI: 10.1016/j.scib.2021.04.029. |
29 | JOLLIFFE I T, CADIMA J. Principal component analysis: A review and recent developments[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2065): 20150202. DOI: 10.1098/rsta.2015.0202. |
30 | THARWAT A, GABER T, IBRAHIM A, et al. Linear discriminant analysis: A detailed tutorial[J]. AI Communications, 2017, 30(2): 169-190. DOI: 10.3233/aic-170729. |
31 | MEYER L, KINDER C, PORTER J. Using machine learning and infrared spectroscopy to quantify species concentrations in battery electrolytes[J]. Journal of the Electrochemical Society, 2023, 170(10): 100521. DOI: 10.1149/1945-7111/ad017e. |
32 | SUN Q T, XIANG Y, LIU Y, et al. Machine learning predicts the X-ray photoelectron spectroscopy of the solid electrolyte interface of lithium metal battery[J]. The Journal of Physical Chemistry Letters, 2022, 13(34): 8047-8054. DOI: 10.1021/acs.jpclett.2c02222. |
33 | ZHAO Y H, OTTO S K, LOMBARDO T, et al. Identification of lithium compounds on surfaces of lithium metal anode with machine-learning-assisted analysis of ToF-SIMS spectra[J]. ACS Applied Materials & Interfaces, 2023, 15(43): 50469-50478. DOI: 10.1021/acsami.3c09643. |
34 | CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40(1): 16-28. DOI: 10.1016/j.compeleceng.2013.11.024. |
35 | LIN F Y, LIANG D, YEH C C, et al. Novel feature selection methods to financial distress prediction[J]. Expert Systems with Applications, 2014, 41(5): 2472-2483. DOI: 10.1016/j.eswa. 2013.09.047. |
36 | ZHAO Q, ZHANG L W, HE B, et al. Identifying descriptors for Li+ conduction in cubic Li-argyrodites via hierarchically encoding crystal structure and inferring causality[J]. Energy Storage Materials, 2021, 40: 386-393. DOI: 10.1016/j.ensm.2021.05.033. |
37 | LIU Y, WU J M, AVDEEV M, et al. Multi-layer feature selection incorporating weighted score-based expert knowledge toward modeling materials with targeted properties[J]. Advanced Theory and Simulations, 2020, 3(2): 1900215. DOI: 10.1002/adts.201900215. |
38 | CAI J, LUO J W, WANG S L, et al. Feature selection in machine learning: A new perspective[J]. Neurocomputing, 2018, 300: 70-79. DOI: 10.1016/j.neucom.2017.11.077. |
39 | WEI Z, HE Q, ZHAO Y. Machine learning for battery research[J]. Journal of Power Sources, 2022, 549: 232125. DOI: 10.1016/j.jpowsour.2022.232125. |
40 | QIAN G N, ZHANG J, CHU S Q, et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain-redox decoupling[J]. ACS Energy Letters, 2021, 6(2): 687-693. DOI: 10.1021/acsenergylett. 0c02699. |
41 | KENCH S, COOPER S J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion[J]. Nature Machine Intelligence, 2021, 3: 299-305. DOI: 10.1038/s42256-021-00322-1. |
42 | HAN T, WANG Z, MENG H X. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation[J]. Journal of Power Sources, 2022, 520: 230823. DOI: 10.1016/j.jpowsour.2021.230823. |
43 | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. DOI: 10.1109/4235.585893. |
44 | BENEDYKCIUK E, DENKOWSKI M, DMITRUK K. Material classification in X-ray images based on multi-scale CNN[J]. Signal, Image and Video Processing, 2021, 15(6): 1285-1293. DOI: 10.1007/s11760-021-01859-9. |
45 | MANN A, KALIDINDI S R. Development of a robust CNN model for capturing microstructure-property linkages and building property closures supporting material design[J]. Frontiers in Materials, 2022, 9: 851085. DOI: 10.3389/fmats.2022.851085. |
46 | LEE J W, PARK W B, LEE J H, et al. A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns[J]. Nature Communications, 2020, 11(1): 86. DOI: 10.1038/s41467-019-13749-3. |
47 | YOON K. Convolutional neural networks for sentence classification[J]. CoRR, 2014 1746–1751. DOI: 10.3115/v1/D14-1181. |
48 | AGUIAR J A, GONG M L, UNOCIC R R, et al. Decoding crystallography from high-resolution electron imaging and diffraction datasets with deep learning[J]. Science Advances, 2019, 5(10): eaaw1949. DOI: 10.1126/sciadv.aaw1949. |
49 | ARTRITH N, URBAN A, CEDER G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm[J]. Journal of Chemical Physics, 2018, 148(24): 241711. DOI: 10.1063/1.5017661. |
50 | XU M Y, ZHU T, ZHANG J Z H. Molecular dynamics simulation of zinc ion in water with an ab initio based neural network potential[J]. The Journal of Physical Chemistry A, 2019, 123(30): 6587-6595. DOI: 10.1021/acs.jpca.9b04087. |
51 | LI W W, ANDO Y, MINAMITANI E, et al. Study of Li atom diffusion in amorphous Li3PO4 with neural network potential[J]. Journal of Chemical Physics, 2017, 147(21): 214106. DOI: 10.1063/1.4997242. |
52 | NOH J, KIM J, STEIN H S, et al. Inverse design of solid-state materials via a continuous representation[J]. Matter, 2019, 1(5): 1370-1384. DOI: 10.1016/j.matt.2019.08.017. |
53 | GU R, MALYSZ P, YANG H, et al. On the suitability of electrochemical-based modeling for lithium-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2016, 2(4): 417-431. DOI: 10.1109/TTE.2016.2571778. |
54 | GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: A recurrent neural network for image generation[EB/OL]. 2015: 1502.04623.https://arxiv.org/abs/1502.04623v2 |
55 | LIU J, SAXENA A, GOEBEL K, et al. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. Annual Conference of the PHM Society, 2010, 2. DOI: 10.36001/phmconf.2010.v2i1.1896. |
56 | SANCHEZ-LENGELING B, ASPURU-GUZIK A. Inverse molecular design using machine learning: Generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365. DOI: 10.1126/science.aat2663. |
57 | GAYON-LOMBARDO A, MOSSER L, BRANDON N P, et al. Pores for thought: Generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries[J]. NPJ Computational Materials, 2020, 6: 82. DOI: 10.1038/s41524-020-0340-7. |
58 | FRANCO A A. Escape from flatland[J]. Nature Machine Intelligence, 2021, 3(4): 277-278.DOI: 10.1038/s42256-021-00334-x. |
59 | YANG X G, KAHNT M, BRÜCKNER D, et al. Tomographic reconstruction with a generative adversarial network[J]. Journal of Synchrotron Radiation, 2020, 27(Pt 2): 486-493. DOI: 10.1107/S1600577520000831. |
60 | GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation[J]. ArXiv e-Prints, 2017: arXiv: 1704.06857. DOI: 10.48550/arXiv.1704.06857. |
61 | CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65. DOI: 10.1109/MSP.2017.2765202. |
62 | ZHOU X F, HSIEH S J, PENG B, et al. Cycle life estimation of lithium-ion polymer batteries using artificial neural network and support vector machine with time-resolved thermography[J]. Microelectronics Reliability, 2017, 79: 48-58. DOI: 10.1016/j.microrel.2017.10.013. |
63 | GAO D, HUANG M H. Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization[J]. Journal of Power Electronics, 2017, 17: 1288-1297. |
64 | CHENG B, TITTERINGTON D M. Neural networks: A review from a statistical perspective[J]. Statistical Science, 1994, 9(1): 2-30. DOI: 10.1214/ss/1177010638. |
65 | MA Y, SHAN C, GAO J W, et al. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction[J]. Energy, 2022, 251: 123973. DOI: 10.1016/j.energy.2022.123973. |
66 | REN X Q, LIU S L, YU X D, et al. A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM[J]. Energy, 2021, 234: 121236. DOI: 10.1016/j.energy.2021.121236. |
67 | REN L, DONG J B, WANG X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3478-3487. DOI: 10.1109/TII.2020.3008223. |
68 | JABLONKA K M, ONGARI D, MOOSAVI S M, et al. Big-data science in porous materials: Materials genomics and machine learning[J]. Chemical Reviews, 2020, 120(16): 8066-8129. DOI: 10.1021/acs.chemrev.0c00004. |
69 | BENDER A, SCHNEIDER N, SEGLER M, et al. Evaluation guidelines for machine learning tools in the chemical sciences[J]. Nature Reviews Chemistry, 2022, 6(6): 428-442. DOI: 10.1038/s41570-022-00391-9. |
70 | MARCOT B G, HANEA A M. What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?[J]. Computational Statistics, 2021, 36(3): 2009-2031. DOI: 10.1007/s00180-020-00999-9. |
71 | BIAN C, HAN X, DUAN Z Y, et al. Hybrid prompt-driven large language model for robust state-of-charge estimation of multi-type Li-ion batteries[J]. IEEE Transactions on Transportation Electrification, 2024, PP(99): 1. DOI: 10.1109/TTE.2024.3391938. |
72 | 吴思远, 李泓. 发展基于"语义检测" 的低参数量、多模态预训练电池通用人工智能模型[J]. 储能科学与技术, 2024, 13(4): 1216-1224. DOI: 10.19799/j.cnki.2095-4239.2024.0092. |
WU S Y, LI H. Developing a general pretrained multimodal battery model with small parameters based on semantic detection[J]. Energy Storage Science and Technology, 2024, 13(4): 1216-1224. DOI: 10.19799/j.cnki.2095-4239.2024.0092. | |
73 | 李文俊, 褚赓, 彭佳悦, 等. 锂离子电池基础科学问题(Ⅻ)——表征方法[J]. 储能科学与技术, 2014, 3(6): 642-667. DOI: 10.3969/j.issn.2095-4239.2014.06.012. |
LI W J, CHU G, PENG J Y, et al. Fundamental scientific aspects of lithium batteries(Ⅻ)—Characterization techniques[J]. Energy Storage Science and Technology, 2014, 3(6): 642-667. DOI: 10.3969/j.issn.2095-4239.2014.06.012. | |
74 | OTTO S K, MORYSON Y, KRAUSKOPF T, et al. In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: Toward better understanding of the passivation layer[J]. Chemistry of Materials, 2021, 33(3): 859-867. DOI: 10.1021/acs.chemmater.0c03518. |
75 | WOOD K N, TEETER G. XPS on Li-battery-related compounds: Analysis of inorganic SEI phases and a methodology for charge correction[J]. ACS Applied Energy Materials, 2018, 1(9): 4493-4504. DOI: 10.1021/acsaem.8b00406. |
76 | GENT W E, ABATE I I, YANG W L, et al. Design rules for high-valent redox in intercalation electrodes[J]. Joule, 2020, 4(7): 1369-1397. DOI: 10.1016/j.joule.2020.05.004. |
77 | LU L L, ZHU Z X, MA T, et al. Superior fast-charging lithium-ion batteries enabled by the high-speed solid-state lithium transport of an intermetallic Cu6 Sn5 network[J]. Advanced Materials, 2022, 34(32): e2202688. DOI: 10.1002/adma.202202688. |
78 | CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5: 386-397. DOI: 10.1038/s41560-020-0601-1. |
79 | YU L, LI M, WEN J G, et al. (S)TEM-EELS as an advanced characterization technique for lithium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(14): 5186-5193. DOI: 10.1039/D1QM00275A. |
80 | DAWKINS J I G, GHAVIDEL M Z, CHHIN D, et al. Operando tracking of solution-phase concentration profiles in Li-ion battery positive electrodes using X-ray fluorescence[J]. Analytical Chemistry, 2020, 92(16): 10908-10912. DOI: 10.1021/acs.analchem.0c02086. |
81 | GIORGETTI M. A review on the structural studies of batteries and host materials by X-ray absorption spectroscopy[J]. ISRN Materials Science, 2013, 2013: 938625. DOI: 10.1155/2013/938625. |
82 | HARKS P P R M L, MULDER F M, NOTTEN P H L. In situ methods for Li-ion battery research: A review of recent developments[J]. Journal of Power Sources, 2015, 288: 92-105. DOI: 10.1016/j.jpowsour.2015.04.084. |
83 | WU Z H, NI Y X, TAN S, et al. Realizing high capacity and zero strain in layered oxide cathodes via lithium dual-site substitution for sodium-ion batteries[J]. Journal of the American Chemical Society, 2023, 145(17): 9596-9606. DOI: 10.1021/jacs.3c00117. |
84 | LIU X S, LIANG Z T, XIANG Y X, et al. Solid-state NMR and MRI spectroscopy for Li/Na batteries: Materials, interface, and in situ characterization[J]. Advanced Materials, 2021, 33(50): e2005878. DOI: 10.1002/adma.202005878. |
85 | GITTLESON F S, YAO K P C, KWABI D G, et al. Raman spectroscopy in lithium-oxygen battery systems[J]. ChemElectro Chem, 2015, 2(10): 1446-1457. DOI: 10.1002/celc.201500218. |
86 | YE J Y, JIANG Y X, SHENG T, et al. In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes[J]. Nano Energy, 2016, 29: 414-427. DOI: 10.1016/j.nanoen.2016.06.023. |
87 | SHADIKE Z, ZHAO E Y, ZHOU Y N, et al. Advanced characterization techniques for sodium-ion battery studies[J]. Advanced Energy Materials, 2018, 8(17): 1702588. DOI: 10.1002/aenm.201702588. |
88 | MARINO C, BOULAOUED A, FULLENWARTH J, et al. Solvation and dynamics of lithium ions in carbonate-based electrolytes during cycling followed by operando infrared spectroscopy: The example of NiSb2, a typical negative conversion-type electrode material for lithium batteries[J]. The Journal of Physical Chemistry C, 2017, 121(48): 26598-26606. DOI: 10.1021/acs.jpcc.7b06685. |
89 | WEI X J, WANG X P, AN Q Y, et al. operando X-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials[J]. Small Methods, 2017, 1(5): 1700083. DOI: 10.1002/smtd.201700083. |
90 | WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234. DOI: 10.1016/j.joule.2018.10.005. |
91 | BALAGUROV A M, BOBRIKOV I A, SAMOYLOVA N Y, et al. Neutron scattering for lithium-ion batteries: Analysis of materials and processes[J]. Russian Chemical Reviews, 2014, 83(12). DOI: 10.1070/rc2014v083n12abeh004473. |
92 | 凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(ⅩⅢ)——电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103. DOI: 10.3969/j.issn.2095-4239.2015.01.010. |
LING S G, WU J Y, ZHANG S, et al. Fundamental scientific aspects of lithium ion batteries(ⅩⅢ)—Electrochemical measure ment[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103. DOI: 10.3969/j.issn.2095-4239.2015.01.010. | |
93 | 凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4): 732-749. DOI: 10.12028/j.issn.2095-4239.2018.0092. |
LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 732-749. DOI: 10.12028/j.issn.2095-4239.2018.0092. | |
94 | INKSON B J. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characteri zation[M]//Materials Characterization Using Nondestructive Evaluation (NDE) Methods. Amsterdam: Elsevier, 2016: 17-43. DOI: 10.1016/b978-0-08-100040-3.00002-x. |
95 | LU J, WU T P, AMINE K. State-of-the-art characterization techniques for advanced lithium-ion batteries[J]. Nature Energy, 2017, 2(3): 17011. DOI: 10.1038/nenergy.2017.11. |
96 | GADRE C A, LEE T, QI J, et al. Vibrational EELS for solid-state Li-ion batteries: Mapping Li distributions and beyond[J]. Microscopy and Microanalysis, 2023, 29(Supplement_1): 633-635. DOI: 10.1093/micmic/ozad067.309. |
97 | KIREEVA N, PERVOV V S, TSIVADZE A Y. Machine learning-based evaluation of functional characteristics of Li-rich layered oxide cathode materials using the data of XPS and XRD spectra[J]. Computational Materials Science, 2024, 231: 112591. DOI: 10.1016/j.commatsci.2023.112591. |
98 | AMENT S, GREGOIRE J, GOMES C. Exponentially-modified Gaussian mixture model: Applications in spectroscopy[J]. 2019.DOI: 10.48550/arXiv.1902.05601. |
99 | LEE T, QI J, GADRE C A, et al. Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3[J]. Nature Communications, 2023, 14: 1940. DOI: 10.1038/s41467-023-37115-6. |
100 | CHEN Y M, CHEN C, HWANG I, et al. Robust machine learning inference from X-ray absorption near edge spectra through featurization[J]. Chemistry of Materials, 2024, 36(5): 2304-2313. DOI: 10.1021/acs.chemmater.3c02584. |
101 | LU Y, ZHAO C Z, HUANG J Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. DOI: 10.1016/j.joule.2022.05.005. |
102 | QUATTROCCHI E, WAN T H, BELOTTI A, et al. The deep-DRT: A deep neural network approach to deconvolve the distribution of relaxation times from multidimensional electroche mical impedance spectroscopy data[J]. Electrochimica Acta, 2021, 392: 139010. DOI: 10.1016/j.electacta.2021.139010. |
103 | BABAEIYAZDI I, REZAEI-ZARE A, SHOKRZADEH S. State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach[J]. Energy, 2021, 223: 120116. DOI: 10.1016/j.energy.2021.120116. |
104 | DUAN Y Z, TIAN J P, LU J H, et al. Deep neural network battery impedance spectra prediction by only using constant-current curve[J]. Energy Storage Materials, 2021, 41: 24-31. DOI: 10.1016/j.ensm.2021.05.047. |
105 | 李放, 闵永军, 张涌. 基于大数据的动力锂电池可靠性关键技术研究综述[J]. 储能科学与技术, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316. |
LI F, MIN Y J, ZHANG Y. Review of key technology research on the reliability of power lithium batteries based on big data[J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. DOI: 10.19799/j.cnki.2095-4239.2023.0316. | |
106 | TIAN J P, XIONG R, LU J H, et al. Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning[J]. Energy Storage Materials, 2022, 50: 718-729. DOI: 10.1016/j.ensm.2022.06.007. |
107 | KOHTZ S, XU Y W, ZHENG Z Y, et al. Physics-informed machine learning model for battery state of health prognostics using partial charging segments[J]. Mechanical Systems and Signal Processing, 2022, 172: 109002. DOI: 10.1016/j.ymssp. 2022.109002. |
108 | GABERŠČEK M. Understanding Li-based battery materials via electrochemical impedance spectroscopy[J]. Nature Communications, 2021, 12(1): 6513. DOI: 10.1038/s41467-021-26894-5. |
109 | ZHAO S, CHEN S H, ZHOU J Y, et al. Potential to transform words to Watts with large language models in battery research[J]. Cell Reports Physical Science, 2024, 5(3): 101844. DOI: 10.1016/j.xcrp.2024.101844. |
110 | FENG Y, HU G, ZHANG Z. GPT4Battery: An LLM-driven framework for adaptive state of health estimation of raw Li-ion batteries[J]. 2024.DOI: 10.48550/arXiv.2402.00068. |
111 | BUTEAU S, LEE E, YOUNG S, et al. User-friendly freeware for determining the concentration of electrolyte components in lithium-ion cells using Fourier transform infrared spectroscopy, beer's law, and machine learning[J]. Journal of the Electrochemical Society, 2019, 166(14): A3102-A3108. DOI: 10.1149/2.0151914jes. |
112 | DIRKS M, POOLE D. Auto-encoder neural network incorporating X-ray fluorescence fundamental parameters with machine learning[J]. X-Ray Spectrometry, 2023, 52(3): 142-150. DOI: 10.1002/xrs.3340. |
113 | LANG T, HEIM A, HEINZL C. Big data analytics for the inspection of battery materials[J]. e-Journal of nondestructive testing, 2024, 29(3). DOI: 10.58286/29226. |
114 | NOMURA Y, YAMAMOTO K, FUJII M, et al. Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding[J]. Nature Communications, 2020, 11(1): 2824. DOI: 10.1038/s41467-020-16622-w. |
115 | ZHANG J Y, LEE W K, GE M Y. Sub-10 second fly-scan nano-tomography using machine learning[J]. Communications Materials, 2022, 3: 91. DOI: 10.1038/s43246-022-00313-8. |
116 | LI J Z, HONG Y S, YAN H F, et al. Probing lattice defects in crystalline battery cathode using hard X-ray nanoprobe with data-driven modeling[J]. Energy Storage Materials, 2022, 45: 647-655. DOI: 10.1016/j.ensm.2021.12.019. |
117 | BALIYAN A, IMAI H. Machine learning based analytical framework for automatic hyperspectral Raman analysis of lithium-ion battery electrodes[J]. Scientific Reports, 2019, 9: 18241. DOI: 10.1038/s41598-019-54770-2. |
118 | GE M S, LIU X Z, ZHAO Z C, et al. Ensemble machine-learning-based analysis for in situ electron diffraction[J]. Advanced Theory and Simulations, 2022, 5(4): 2100337. DOI: 10.1002/adts.202100337. |
119 | SZYMANSKI N J, BARTEL C J, ZENG Y, et al. Adaptively driven X-ray diffraction guided by machine learning for autonomous phase identification[J]. NPJ Computational Materials, 2023, 9: 31. DOI: 10.1038/s41524-023-00984-y. |
120 | LOMBARDO T, KERN C, SANN J, et al. Bridging the gap: Electrode microstructure and interphase characterization by combining ToF-SIMS and machine learning[J]. Advanced Materials Interfaces, 2023, 10(36): 2300640. DOI: 10.1002/admi.202300640. |
121 | SHA W X, GUO Y Q, CHENG D P, et al. Degradation mechanism analysis of LiNi0.5Co0.2Mn0.3O2 single crystal cathode materials through machine learning[J]. NPJ Computational Materials, 2022, 8: 223. DOI: 10.1038/s41524-022-00905-5. |
122 | SU Z L, DECENCIÈRE E, NGUYEN T T, et al. Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images[J]. NPJ Computational Materials, 2022, 8: 30. DOI: 10.1038/s41524-022-00709-7. |
123 | JIANG Z S, LI J Z, YANG Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nature Communications, 2020, 11(1): 2310. DOI: 10.1038/s41467-020-16233-5. |
[1] | 孙中麟, 李嘉波, 田迪, 王志璇, 邢晓静. 基于COA-LSTM和VMD的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2024, 13(9): 3254-3265. |
[2] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[3] | 胡雪峰, 常先雷, 刘肖肖, 徐威, 张文彬. 适用于宽温度范围的锂离子电池SOC估计方法[J]. 储能科学与技术, 2024, 13(9): 2983-2994. |
[4] | 沈思远, 刘亚坤, 罗栋煌, 李雨珺, 郝伟. 储能锂离子电池模组暂态过电压防护设计与电路研发[J]. 储能科学与技术, 2024, 13(9): 3277-3286. |
[5] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[6] | 樊金保, 李娜, 吴宜琨, 贺春旺, 杨乐, 宋维力, 陈浩森. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. |
[7] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[8] | 何宁, 杨芳芳. 考虑能量和温度特征的锂离子电池早期寿命预测[J]. 储能科学与技术, 2024, 13(9): 3016-3029. |
[9] | 管鸿盛, 钱诚, 孙博, 任羿. 贫数据条件下锂离子电池容量退化轨迹预测方法[J]. 储能科学与技术, 2024, 13(9): 3084-3093. |
[10] | 刘定宏, 董文楷, 李召阳, 张红烛, 齐昕. 基于RUN-GRU-attention模型的实车动力电池健康状态估计方法[J]. 储能科学与技术, 2024, 13(9): 3042-3058. |
[11] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[12] | 田成文, 孙丙香, 赵鑫泽, 付智城, 马仕昌, 赵博, 张旭博. 基于数据驱动的锂离子电池快速寿命预测[J]. 储能科学与技术, 2024, 13(9): 3103-3111. |
[13] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[14] | 李从心, 岳美玲, 李昕彤, 熊庆辉, 刘孝艳. 基于条件神经网络的质子交换膜燃料电池的老化性能预测[J]. 储能科学与技术, 2024, 13(9): 3094-3102. |
[15] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||