储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3266-3276.doi: 10.19799/j.cnki.2095-4239.2024.0243

• 储能系统与工程 • 上一篇    下一篇

斜坡式重力储能系统机械与电气联合仿真的多软件协同建模方法

刘大猛1(), 牟雪鹏1, 石博豪2(), 陈巨龙1, 王斌1, 罗晨1, 钟承君2, 陈思哲2   

  1. 1.贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550000
    2.广东工业大学自动化学院,广东 广州 510006
  • 收稿日期:2024-03-19 修回日期:2024-06-02 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 石博豪 E-mail:282775122@qq.com;1137022922@qq.com
  • 作者简介:刘大猛(1983—),男,硕士,高级工程师,研究方向为新型储能、电源建设工程质量监督,E-mail:282775122@qq.com
  • 基金资助:
    南方电网有限责任公司重点科技项目(GZKJXM20220033)

Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems

Dameng LIU1(), Xuepeng MOU1, Bohao SHI2(), Julong CHEN1, Bin WANG1, Chen LUO1, Chengjun ZHONG2, Sizhe CHEN2   

  1. 1.Power Grid Planning Research Center of Guizhou Power Grid, Guiyang 550000, Guizhou, China
    2.School of Automation, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2024-03-19 Revised:2024-06-02 Online:2024-09-28 Published:2024-09-20
  • Contact: Bohao SHI E-mail:282775122@qq.com;1137022922@qq.com

摘要:

重力储能具有安全性高、成本低、寿命长、存储能量无衰减、建设周期短及环境友好等优势。其中,斜坡式重力储能可以利用山体自然落差降低建设成本,并减少占用平地资源,是长时大容量储能领域的重要前瞻性技术之一。然而,斜坡式重力储能系统具有机械与电气动态高度耦合的特点,现有仿真模型难以完整描述其动态特性。针对该问题,本工作提出了一种斜坡式重力储能系统机械与电气联合仿真的多软件协同建模方法。首先,采用三维机械设计软件Solidworks建立包括斜坡、轨道、载重小车和质量块的机械系统框架模型;然后,将Solidworks中建立的模型导入多体动力学仿真软件Adams,并建立载重小车与链传动机构的联系,获得机械系统完整模型;最后,将Adams中的机械模型导入Simulink,并建立与电气模型的联系,从而获得机电联合仿真模型。将所提出的多软件协同仿真模型与Simulink独立仿真模型,在电网正常和异常工况下分别进行仿真对比,结果表明多软件协同仿真模型能够更加全面地描述斜坡式重力储能系统的动态特性。因此,多软件协同仿真模型能够更好地支撑对斜坡式重力储能的功率特性分析、安全性评估和机械参数优化设计等工作。

关键词: 斜坡式重力储能, 机电联合仿真建模, 多软件协同仿真建模

Abstract:

Gravity energy storage offers numerous advantages, including high safety, low cost, long lifespan, no attenuation of stored energy, short construction period, and environmental friendliness. In particular, slope gravity energy storage leverages the natural incline of mountains to reduce construction costs and minimize the use of flat land resources. The proposed technology is a promising approach for large-scale, long-term energy storage. However, slope gravity energy storage systems exhibit high coupling between mechanical and electrical dynamics, and the existing simulation model makes it challenging to fully describe their dynamic characteristics. To address this issue, this study introduces a multi-software collaborative modeling approach for the mechanical and electrical co-simulation of slope gravity energy storage systems. First, a mechanical system frame model, including the slope, track, load car, and mass block, was constructed using Solidworks, a three-dimensional mechanical design software. The model from Solidworks is then imported into the multi-body dynamics simulation software Adams, where the connection between the load car and the chain transmission mechanism is established, resulting in a complete mechanical system model. Finally, the mechanical model from Adams was imported into Simulink, where it was integrated with the electrical model to obtain a mechanical-electrical joint simulation model. The proposed multi-software co-simulation model was compared with an independent Simulink simulation model under normal and abnormal power grid conditions. The results indicate that the multi-software co-simulation model provides a more comprehensive description of the dynamic characteristics of slope gravity energy storage systems. Consequently, this model can better support the power characteristic analysis, safety evaluation, and mechanical parameter optimization design of slope gravity energy storage.

Key words: slope gravity energy storage, electromechanical co-simulation modeling, multi-software co-simulation modeling

中图分类号: