1 |
TANG X P, ZOU C F, WIK T, et al. Run-to-Run control for active balancing of lithium iron phosphate battery packs[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1499-1512. DOI: 10.1109/TPEL.2019.2919709.
|
2 |
林娜, 朱武, 邓安全. 基于融合方法预测锂离子电池剩余寿命[J]. 科学技术与工程, 2020, 20(5): 1928-1933. DOI: 10.3969/j.issn.1671-1815.2020.05.033.
|
|
LIN N, ZHU W, DENG A Q. Remaining useful life prediction of the lithium-ion battery based on fusion method[J]. Science Technology and Engineering, 2020, 20(5): 1928-1933. DOI: 10.3969/j.issn.1671-1815.2020.05.033.
|
3 |
张宇波, 王有元, 黄洞宁, 等. 面向变工况条件的锂离子电池寿命退化预测方法[J]. 储能科学与技术, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233.
|
|
ZHANG Y B, WANG Y Y, HUANG D N, et al. Prognostic method of lithium-ion battery lifetime degradation under various working conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. DOI: 10.19799/j.cnki.2095-4239.2023.0233.
|
4 |
GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: 109057. DOI: 10.1016/j.measurement.2021.109057.
|
5 |
LIU C, WANG Y J, CHEN Z H. Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system[J]. Energy, 2019, 166: 796-806. DOI: 10.1016/j.energy.2018.10.131.
|
6 |
刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015.
|
|
LIU Y F, ZHAO G Q, PENG X Y. A lithium-ion battery remaining using life prediction method based on multi-kernel relevance vector machine optimized model[J]. Acta Electronica Sinica, 2019, 47(6): 1285-1292. DOI: 10.3969/j.issn.0372-2112.2019.06.015.
|
7 |
OUYANG T C, XU P H, CHEN J X, et al. An online prediction of capacity and remaining useful life of lithium-ion batteries based on simultaneous input and state estimation algorithm[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8102-8113. DOI: 10.1109/TPEL.2020.3044725.
|
8 |
WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. DOI: 10.1016/j.jpowsour.2020.228450.
|
9 |
陈翔, 夏飞. 基于CEEMD-AKF的锂电池剩余使用寿命预测方法[J]. 哈尔滨理工大学学报, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004.
|
|
CHEN X, XIA F. Remaining useful life predictionmethod for lithium-ion batteries based on CEEMD-AKF[J]. Journal of Harbin University of Science and Technology, 2023, 28(3): 28-36. DOI: 10.15938/j.jhust.2023.03.004.
|
10 |
REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. DOI: 10.1109/ACCESS.2018.2858856.
|
11 |
SHU X, LI G, SHEN J W, et al. A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization[J]. Energy, 2020, 204: 117957. DOI: 10.1016/j.energy.2020.117957.
|
12 |
ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. DOI: 10.1109/TVT.2018.2805189.
|
13 |
徐彬泰, 孟祥鹿, 田安琪, 等. 基于粒子群优化及高斯过程回归的铅酸电池荷电状态预测[J]. 南京理工大学学报, 2018, 42(2): 162-168. DOI: 10.14177/j.cnki.32-1397n.2018.42.02.005.
|
|
XU B T, MENG X L, TIAN A Q, et al. Prediction for state of charge of lead-acid battery by particle swarm optimization with Gaussian process regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(2): 162-168. DOI: 10.14177/j.cnki.32-1397n.2018.42.02.005.
|
14 |
张浩, 胡昌华, 杜党波, 等. 多状态影响下基于Bi⁃LSTM网络的锂电池剩余寿命预测方法[J]. 电子学报, 2022, 50(3): 619-624. DOI: 10.12263/DZXB.20210207.
|
|
ZHANG H, HU C H, DU D B, et al. Remaining useful life prediction method of lithium? Ion battery based on Bi-LSTM network under Multi-state influence[J]. Acta Electronica Sinica, 2022, 50(3): 619-624. DOI: 10.12263/DZXB.20210207.
|