1 |
BENOY S M, PANDEY M, BHATTACHARJYA D, et al. Recent trends in supercapacitor-battery hybrid energy storage devices based on carbon materials[J]. Journal of Energy Storage, 2022, 52: 104938. DOI: 10.1016/j.est.2022.104938.
|
2 |
ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. DOI: 10.1016/j.rser.2018.03.002.
|
3 |
尹莲芳, 谢乐琼, 刘建红, 等. 磷酸铁锂电池应用展望[J]. 电池工业, 2021, 25(1): 50-53. DOI: 10.3969/j.issn.1008-7923.2021.01.011.
|
|
YIN L F, XIE L Q, LIU J H, et al. Prospectives of LiFePO4 based batteries[J]. Chinese Battery Industry, 2021, 25(1): 50-53. DOI: 10.3969/j.issn.1008-7923.2021.01.011.
|
4 |
LI Z H, ZHANG D M, YANG F X. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material[J]. Journal of Materials Science, 2009, 44(10): 2435-2443. DOI: 10.1007/s10853-009-3316-z.
|
5 |
华宁, 崔涛, 韩英, 等. 锂离子蓄电池正极材料LiFePO4研究进展[J]. 电子元件与材料, 2007, 26(12): 1-4.
|
|
HUA N, CUI T, HAN Y, et al. Research progress in lithium iron phosphate as cathode material[J]. Electronic Components and Materials, 2007, 26(12): 1-4.
|
6 |
LI X Z, ZHANG M, YUAN S X, et al. Research progress of silicon/carbon anode materials for lithium-ion batteries: Structure design and synthesis method[J]. ChemElectroChem, 2020, 7(21): 4289-4302. DOI: 10.1002/celc.202001060.
|
7 |
ZHENG P L, SUN J C, LIU H Y, et al. Microstructure engineered silicon alloy anodes for lithium-ion batteries: Advances and challenges[J]. Batteries & Supercaps, 2023, 6(1): 2200481. DOI: 10.1002/batt.202200481.
|
8 |
LIANG X Q, QI R J, ZHAO M, et al. Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators[J]. Energy Storage Materials, 2020, 24: 297-303. DOI: 10.1016/j.ensm.2019.08.002.
|
9 |
YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716. DOI: 10.1016/j.est.2023.106716.
|
10 |
王宇作, 王瑨, 卢颖莉, 等. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. DOI: 10.19799/j.cnki.2095-4239.2022.0037.
|
|
WANG Y Z, WANG J, LU Y L, et al. Study on the effects of pore structure on lithium-storage performances for soft carbon[J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. DOI: 10.19799/j.cnki.2095-4239.2022.0037.
|
11 |
廖雅贇, 周峰, 张颖曦, 等. 锂离子电池快充石墨负极材料研究进展[J]. 储能科学与技术, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777.
|
|
LIAO Y Y, ZHOU F, ZHANG Y X, et al. Research progress on fast-charging graphite anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. DOI: 10.19799/j.cnki.2095-4239.2023.0777.
|
12 |
陈思, 章庆林, 杨重阳, 等. 负极石墨/硬碳电极对循环性能的影响[J]. 电源技术, 2020, 44(4): 485-488. DOI: 10.3969/j.issn.1002-087X.2020.04.003.
|
|
CHEN S, ZHANG Q L, YANG C Y, et al. Influence of graphite/hard carbon anode on cycling performance[J]. Chinese Journal of Power Sources, 2020, 44(4): 485-488. DOI: 10.3969/j.issn.1002-087X.2020.04.003.
|
13 |
YU H C, DONG X L, PANG Y, et al. High power lithium-ion battery based on spinel cathode and hard carbon anode[J]. Electrochimica Acta, 2017, 228: 251-258. DOI: 10.1016/j.electacta.2017.01.096.
|
14 |
AN Z X, FANG W Y, XU J Q, et al. Comparative analysis of electrochemical performances and capacity degrading behaviors in lithium-ion capacitors based on different anodic materials[J]. Ionics, 2019, 25(7): 3277-3285. DOI: 10.1007/s11581-019-02848-2.
|
15 |
LI S T, MENG Q H, FAN M S, et al. Analysis for performance degradation mechanisms of the retired LiFePO4/graphite power cells[J]. Ionics, 2020, 26(9): 4443-4454. DOI: 10.1007/s11581-020-03590-w.
|
16 |
KIM J, LEE W, SEOK J, et al. Electrochemical profiling method for diagnosis of inhomogeneous reactions in lithium-ion batteries[J]. Cell Reports Physical Science, 2023, 4(4): 101331. DOI: 10.1016/j.xcrp.2023.101331.
|
17 |
于维珂, 汪涛, 杨尘. 储能用锂离子电池充放电能量效率的影响因素[J]. 电池, 2020, 50(6): 552-555. DOI: 10.19535/j.1001-1579.2020.06.010.
|
|
YU W K, WANG T, YANG C. Influence factors of charge-discharge energy efficiency of Li-ion battery for energy storage[J]. Battery Bimonthly, 2020, 50(6): 552-555. DOI: 10.19535/j.1001-1579.2020.06.010.
|
18 |
王振, 李建玲, 王康康, 等. 磷酸铁锂/石墨动力电池衰退机理分析[J]. 稀有金属与硬质合金, 2020, 48(3): 60-66.
|
|
WANG Z, LI J L, WANG K K, et al. Analysis of capacity fading mechanisms of LiFePO4/graphite power battery[J]. Rare Metals and Cemented Carbides, 2020, 48(3): 60-66.
|
19 |
赵光金, 董锐锋, 王放放, 等. 磷酸铁锂电池充放电循环过程中电化学阻抗实验研究[J]. 热力发电, 2020, 49(8): 64-70. DOI: 10.19666/j.rlfd.202004110.
|
|
ZHAO G J, DONG R F, WANG F F, et al. Experimental study on electrochemical impedance of lithium iron phosphate batteries during charging and discharging cycle[J]. Thermal Power Generation, 2020, 49(8): 64-70. DOI: 10.19666/j.rlfd.202004110.
|
20 |
TEO L P, BURAIDAH M H, AROF A K. Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques[J]. Molecular Crystals and Liquid Crystals, 2019, 694(1): 117-130. DOI: 10.1080/15421406.2020.1723899.
|
21 |
WANG M, LUO M, CHEN Y B, et al. Electrochemical deintercalation kinetics of 0.5Li2MnO3·0.5LiNi1/3Mn1/3Co1/3O2 studied by EIS and PITT[J]. Journal of Alloys and Compounds, 2017, 696: 907-913. DOI: 10.1016/j.jallcom.2016.12.085.
|
22 |
SONG X Y, KINOSHITA K, TRAN T D. Microstructural characterization of lithiated graphite[J]. Journal of the Electrochemical Society, 1996, 143(6): L120-L123. DOI: 10.1149/1.1836896.
|
23 |
SCHROEDER M, MENNE S, SÉGALINI J, et al. Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors[J]. Journal of Power Sources, 2014, 266: 250-258. DOI: 10.1016/j.jpowsour.2014.05.024.
|
24 |
AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76. DOI: 10.1016/j.carbon.2016.04.008.
|
25 |
LI D J, DANILOV D, ZHANG Z R, et al. Modeling the SEI-formation on graphite electrodes in LiFePO4 batteries[J]. Journal of the Electrochemical Society, 2015, 162(6): A858-A869. DOI: 10.1149/2.0161506jes.
|
26 |
ANDO K, MATSUDA T, IMAMURA D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis[J]. Journal of Power Sources, 2018, 390: 278-285. DOI: 10.1016/j.jpowsour.2018. 04.043.
|
27 |
SMITH A J, DAHN J R. Delta differential capacity analysis[J]. Journal of the Electrochemical Society, 2012, 159(3): A290-A293. DOI: 10.1149/2.076203jes.
|
28 |
KATO H, KOBAYASHI Y, MIYASHIRO H. Differential voltage curve analysis of a lithium-ion battery during discharge[J]. Journal of Power Sources, 2018, 398: 49-54. DOI: 10.1016/j.jpowsour.2018.07.043.
|
29 |
黄海宁. 磷酸铁锂电池循环寿命衰减和寿命预测[J]. 电源技术, 2022, 46(4): 376-379. DOI: 10.3969/j.issn.1002-087X.2022.04.009.
|
|
HUANG H N. Cycle life fading of LiFePO4 lithium-ion battery and its life prediction[J]. Chinese Journal of Power Sources, 2022, 46(4): 376-379. DOI: 10.3969/j.issn.1002-087X.2022.04.009.
|