储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3226-3244.doi: 10.19799/j.cnki.2095-4239.2024.0768
张新新1(), 岑官骏1, 乔荣涵1, 朱璟1, 郝峻丰1, 孙蔷馥1, 田孟羽2, 金周2, 詹元杰2, 闫勇2, 贲留斌1,2, 俞海龙1, 刘燕燕1, 周洪3, 黄学杰1,2()
收稿日期:
2024-08-18
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
黄学杰
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
作者简介:
张新新(1999—),女,博士研究生,研究方向为锂离子电池,E-mail:zhangxinxin223@mails.ucas.ac.cn;
Xinxin ZHANG1(), Guanjun CEN1, Ronghan QIAO1, Jing ZHU1, Junfeng HAO1, Qiangfu SUN1, Mengyu TIAN2, Zhou JIN2, Yuanjie ZHAN2, Yong YAN2, Liubin BEN1,2, Hailong YU1, Yanyan LIU1, Hong ZHOU3, Xueji HUANG1,2()
Received:
2024-08-18
Online:
2024-09-28
Published:
2024-09-20
Contact:
Xueji HUANG
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
摘要:
本文是近两个月锂电池文献的评述,以“lithium”和“batter*”为关键词检索了Web of Science从2024年6月1日至2024年7月31日上线的锂电池研究论文,共6113篇。首选采用BERTopic主题模型对其摘要文本进行分析,构建锂电池论文的研究主题图,再选择其中100篇加以评论。正极材料的研究集中于尖晶石结构LiNi0.5Mn1.5O4材料和富锂材料的掺杂改性、表面包覆、结构设计等。负极材料的研究重点包括硅基负极的结构设计和性能提升、金属锂负极的界面设计。固态电解质的研究主要包括对聚合物固态电解质和卤化物固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。对固态电池,正极材料的体相改性、表面包覆和合成方法、锂金属负极的界面构筑和三维结构设计、多层电解质的使用有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计和电解液的开发。电池技术方面的研究还包括干法电极制备技术、黏结剂和隔膜的研究、集流体的开发和锂氧电池的电解质设计。电极中的锂离子输运和降解机制、电解液中的锂沉积形貌和SEI结构演变、全电池热失控分析,溶剂对CEI组分影响的理论模拟以及降低电池成本和优化制造工艺的论文也有多篇。
中图分类号:
张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244.
Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024[J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244.
1 | ZOU J S, LIANG G M, ZHANG S L, et al. Enhanced high voltage stability of spinel-type structured LiNi0.5Mn1.5O4 electrodes: Targeted octahedral crystal site modification[J]. Batteries & Supercaps, 2024, 7(8): 2400123. DOI: 10.1002/batt.202400123. |
2 | ADAMO J B, MANTHIRAM A. Understanding the effects of Al and Mn doping on the H2-H3 phase transition in high-nickel layered oxide cathodes[J]. Chemistry of Materials, 2024, 36(12): 6226-6236. DOI: 10.1021/acs.chemmater.4c01033. |
3 | LI J, YANG H, DENG Q, et al. Stabilizing Ni-rich single-crystalline LiNi0.83Co0.07Mn0.10O2 cathodes using Ce/Gd Co-doped high-entropy composite surfaces[J]. Angewandte Chemie International Edition, 2024, 63(10): e202318042. DOI: 10.1002/anie.202318042. |
4 | LYU Y, HUANG S F, ZHANG J H, et al. Antimony doping enabled radially aligned microstructure in LiNi0.91Co0.06Al0.03O2 cathode for high-voltage and low-temperature lithium battery[J]. Advanced Functional Materials, 2024, 34(28): 2312284. DOI: 10.1002/adfm.202312284. |
5 | LI C H, ZHANG X D, CUI Y C, et al. Ultrahigh-Ni cathode with superior structure stability enabled by a covalent bonding strategy[J]. Batteries & Supercaps, 2024: 2400218. DOI: 10.1002/batt. 202400218. |
6 | TIAN J S, WANG G, ZENG W H, et al. A bimetal strategy for suppressing oxygen release of 4.6 V high-voltage single-crystal high-nickel cathode[J]. Energy Storage Materials, 2024, 68: 103344. DOI: 10.1016/j.ensm.2024.103344. |
7 | REN J C, LIU Z B, TANG Y, et al. Enhancing electrochemical performance of nickel-rich NCM cathode material through Nb modification across a wide temperature range[J]. Journal of Power Sources, 2024, 606: 234522. DOI: 10.1016/j.jpowsour. 2024.234522. |
8 | DU F H, ZHANG X T, WANG Y C, et al. Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode[J]. Journal of Energy Chemistry, 2024, 97: 20-29. DOI: 10.1016/j.jechem.2024.05.037. |
9 | LIN L L, ZHANG L H, FU Z Q, et al. Unraveling mechanism for microstructure engineering toward high-capacity nickel-rich cathode materials[J]. Advanced Materials, 2024: e2406175. DOI: 10.1002/adma.202406175. |
10 | CUI T W, XU J L, WANG X, et al. Highly reversible transition metal migration in superstructure-free Li-rich oxide boosting voltage stability and redox symmetry[J]. Nature Communications, 2024, 15(1): 4742. DOI: 10.1038/s41467-024-48890-1. |
11 | HWANG J, KIM D. Unified design flow for facilitating fast Li kinetics in layered oxide cathodes[J]. Energy Storage Materials, 2024, 69: 103412. DOI: 10.1016/j.ensm.2024.103412. |
12 | LEE S, LI C, MANTHIRAM A. Effects of calcination conditions onthe structural and electrochemical behaviors of high-nickel, cobalt-free LiNi0.9Mn0.1O2 cathode[J]. Advanced Energy Materials, 2024, 14(24): 2400662. DOI: 10.1002/aenm.202400662. |
13 | HAN Q, YU H F, CAI L L, et al. Unique insights into the design of low-strain single-crystalline Ni-rich cathodes with superior cycling stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(10): e2317282121. DOI: 10.1073/pnas.2317282121. |
14 | MARIE J J, HOUSE R A, REES G J, et al. Trapped O2 and the origin of voltage fade in layered Li-rich cathodes[J]. Nature Materials, 2024, 23(6): 818-825. DOI: 10.1038/s41563-024-01833-z. |
15 | MENG X H, XIAO D D, ZHOU Z Y, et al. Self-limiting phase transition enabling reversible overstoichiometric Li storage in Ni-rich cathodes[J]. Journal of the American Chemical Society, 2024, 146(21): 14889-14897. DOI: 10.1021/jacs.4c04756. |
16 | ZHANG M K, QIU L, HUA W B, et al. Formulating local environment of oxygen mitigates voltage hysteresis in Li-rich materials[J]. Advanced Materials, 2024, 36(16): e2311814. DOI: 10.1002/adma.202311814. |
17 | LUO Y T, HANDY J V, DAS T, et al. Effect of pre-intercalation on Li-ion diffusion mapped by topochemical single-crystal transformation and operando investigation[J]. Nature Materials, 2024, 23(7): 960-968. DOI: 10.1038/s41563-024-01842-y. |
18 | ZHANG Y, TANG W, GAO H P, et al. Monolithic layered silicon composed of a crystalline-amorphous network for sustainable lithium-ion battery anodes[J]. ACS Nano, 2024, 18(24): 15671-15680. DOI: 10.1021/acsnano.4c01814. |
19 | WANG H L, CHAO Y F, LI J Z, et al. What is the real origin of single-walled carbon nanotubes for the performance enhancement of Si-based anodes?[J]. Journal of the American Chemical Society, 2024, 146(25): 17041-17053. DOI: 10.1021/jacs.4c01677. |
20 | JIN S, GAO X S, HONG S F, et al. Fast-charge, long-duration storage in lithium batteries[J]. Joule, 2024, 8(3): 746-763. DOI: 10.1016/j.joule.2023.12.022. |
21 | SHI Z Q, WANG Y M, YUE X Y, et al. Mechanically interlocked interphase with energy dissipation and fast Li-ion transport for high-capacity lithium metal batteries[J]. Advanced Materials, 2024, 36(23): e2401711. DOI: 10.1002/adma.202401711. |
22 | WANG Y J, HOU H Y, TANTRATIAN K, et al. Insight into the interface design for Li metal anode: Organic-rich or inorganic-rich[J]. Advanced Functional Materials, 2024: 2406426. DOI: 10.1002/adfm.202406426. |
23 | ZHU Y F, LAO Z J, ZHANG M T, et al. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries[J]. Nature Communications, 2024, 15(1): 3914. DOI: 10.1038/s41467-024-48078-7. |
24 | PENG H, LONG T R, PENG J, et al. Molecular design for in-situ polymerized solid polymer electrolytes enabling stable cycling of lithium metal batteries[J]. Advanced Energy Materials, 2024, 14(22): 2400428. DOI: 10.1002/aenm.202400428. |
25 | XIE X X, ZHANG P, LI X H, et al. Rational design of F-modified polyester electrolytes for sustainable all-solid-state lithium metal batteries[J]. Journal of the American Chemical Society, 2024, 146(9): 5940-5951. DOI: 10.1021/jacs.3c12094. |
26 | ZHANG D C, LIU Y X, YANG S, et al. Inhibiting residual solvent induced side reactions in vinylidene fluoride-based polymer electrolytes enables ultra-stable solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(28): e2401549. DOI: 10.1002/adma.202401549. |
27 | ZHENG G R, XUE S D, LI Y H, et al. Anion-mediated interphase construction enabling high-voltage solid-state lithium metal batteries[J]. Nano Energy, 2024, 125: 109617. DOI: 10.1016/j.nanoen.2024.109617. |
28 | CHEN S Y, PENG Q K, WEI Z S, et al. Revealing the quasi-solid-state electrolyte role on the thermal runaway behavior of lithium metal battery[J]. Energy Storage Materials, 2024, 70: 103481. DOI: 10.1016/j.ensm.2024.103481. |
29 | YANG K, MA J B, LI Y H, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries[J]. Journal of the American Chemical Society, 2024, 146(16): 11371-11381. DOI: 10.1021/jacs.4c00976. |
30 | FU E, WANG H, ZHANG Y, et al. A tri-salt composite electrolyte with temperature switch function for intelligently temperature-controlled lithium batteries[J]. Energy & Environmental Materials, 2024. doi: 10.1002/eem2.12745. |
31 | YE Y, GENG J Z, ZUO D X, et al. High-voltage long-cycling all-solid-state lithium batteries with high-valent-element-doped halide electrolytes[J]. ACS Nano, 2024, 18(28): 18368-18378. DOI: 10.1021/acsnano.4c02678. |
32 | BONSU J O, BHADRA A, KUNDU D P. Wet chemistry route to Li3InCl6: Microstructural control render high ionic conductivity and enhanced all-solid-state battery performance[J]. Advanced Science, 2024: e2403208. DOI: 10.1002/advs.202403208. |
33 | CHEN J H, LU H C, KONG X R, et al. Interphase engineering via solvent molecule chemistry for stable lithium metal batteries[J]. Angewandte Chemie International Edition, 2024, 63(23): e202317923. DOI: 10.1002/anie.202317923. |
34 | CHEN J W, ZHANG D M, ZHU L, et al. Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries[J]. Nature Communications, 2024, 15(1): 3217. DOI: 10.1038/s41467-024-47448-5. |
35 | QIN M S, ZENG Z Q, MA F F, et al. Doping in solvation structure: Enabling fluorinated carbonate electrolyte for high-voltage and high-safety lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(6): 2536-2544. DOI: 10.1021/acsenergylett.4c00790. |
36 | LI A M, WANG Z Y, POLLARD T P, et al. High voltage electrolytes for lithium-ion batteries with micro-sized silicon anodes[J]. Nature Communications, 2024, 15(1): 1206. DOI: 10.1038/s41467-024-45374-0. |
37 | KIM J M, YI R, CAO X, et al. Extending calendar life of Si-based lithium-ion batteries by a localized high concentration electrolyte[J]. ACS Energy Letters, 2024, 9(5): 2318-2325. DOI: 10.1021/acsenergylett.4c00348. |
38 | WANG Y Q, XIE L J, SUN H Q, et al. 4, 5-Difluoro-1,3-dioxolan-2-one as a film-forming additive improves the cycling and thermal stability of SiO/C anode Li-ion batteries[J]. Process Safety and Environmental Protection, 2024, 183: 496-504. DOI: 10.1016/j.psep.2024.01.043. |
39 | LI A M, BORODIN O, POLLARD T P, et al. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries[J]. Nature Chemistry, 2024, 16(6): 922-929. DOI: 10.1038/s41557-024-01497-x. |
40 | YUAN S, CAO S K, CHEN X, et al. Deshielding anions enable solvation chemistry control of LiPF6-based electrolyte toward low-temperature lithium-ion batteries[J]. Advanced Materials, 2024, 36(16): e2311327. DOI: 10.1002/adma.202311327. |
41 | WU X L, XUE Y J, LI Z Z, et al. Molecular design of highly Li-ion conductive cathode-electrolyte interface enabling excellent rate performance for lithium-ion batteries[J]. Chemical Engineering Journal, 2024, 493: 152512. DOI: 10.1016/j.cej.2024.152512. |
42 | SUN S P, YU J T, MA X Y, et al. In situ electrochemical polymerization of cathode electrolyte interphase enabling high-performance lithium metal batteries[J]. Small, 2024: e2403145. DOI: 10.1002/smll.202403145. |
43 | CHEN J L, LIN Y, LI Q, et al. Amphiphilic polymer electrolyte blocking lattice oxygen evolution from high-voltage nickel-rich cathodes for ultra-thermal stabile batteries[J]. Angewandte Chemie International Edition, 2024, 63(36): e202407024. DOI: 10.1002/anie.202407024. |
44 | ZENG X Y, GAO X, LI H J, et al. Constructing sulfur-rich interphase to promote the cycle stability of graphite/LiNi0.8Co0.1Mn0.1O2 pouch battery at elevated temperature[J]. Journal of Power Sources, 2024, 608: 234673. DOI: 10.1016/j.jpowsour.2024. 234673. |
45 | AZMI R, LINDGREN F, STOKES-RODRIGUEZ K, et al. An XPS study of electrolytes for Li-ion batteries in full cell LNMO vs Si/graphite[J]. ACS Applied Materials & Interfaces, 2024, 16(26): 34266-34280. DOI: 10.1021/acsami.4c01891. |
46 | CHANG Z H, MA C X, WANG R N, et al. Design and mechanism study of high-safety and long-life electrolyte for high-energy-density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(15): 18980-18990. DOI: 10.1021/acsami. 4c02237. |
47 | LU H, LEI Y, MA Y T, et al. 4-fluorophenylboronic anhydride as an impurity-scavenging agent and two-sided interface modifier for high-performance lithium ion batteries[J]. Chemical Engineering Journal, 2024, 491: 152180. DOI: 10.1016/j.cej.2024.152180. |
48 | CHENG G Z, SUN H, WANG H R, et al. Efficient ion percolating network for high-performance all-solid-state cathodes[J]. Advanced Materials, 2024, 36(21): e2312927. DOI: 10.1002/adma.202312927. |
49 | CHOI H, CHO S, KIM Y S, et al. An effective catholyte for sulfide-based all-solid-state batteries utilizing gas absorbents[J]. Small, 2024: e2403147. DOI: 10.1002/smll.202403147. |
50 | LIN C X, LIU Y, SU H, et al. Elevating cycle stability and reaction kinetics in Ni-rich cathodes through tailored bulk and interface chemistry for sulfide-based all-solid-state lithium batteries[J]. Advanced Functional Materials, 2024, 34(21): 2311564. DOI: 10.1002/adfm.202311564. |
51 | LIU Y K, YU T, XU S, et al. Constructing an oxyhalide interface for 4.8 V-tolerant high-nickel cathodes in all-solid-state lithium-ion batteries[J]. Angewandte Chemie International Edition, 2024, 63(33): e202403617. DOI: 10.1002/anie.202403617. |
52 | JIANG W, ZHU X X, LIU Y W, et al. Mechanically reinforced Ni-rich cathodes for High-power and long-life all-solid-state batteries[J]. Chemical Engineering Science, 2024, 288: 119775. DOI: 10.1016/j.ces.2024.119775. |
53 | XIONG X L, LIN T, TIAN C X, et al. Creep-type all-solid-state cathode achieving long life[J]. Nature Communications, 2024, 15(1): 3706. DOI: 10.1038/s41467-024-48174-8. |
54 | ZHU X X, JIANG W, WANG L G, et al. Constructing resilient cross-linked network toward stable all-solid-state lithium-sulfur batteries[J]. Advanced Energy Materials, 2024, 14(17): 2304244. DOI: 10.1002/aenm.202304244. |
55 | CHARLESWORTH T, YIAMSAWAT K, GAO H, et al. Lithium borate polycarbonates for high-capacity solid-state composite cathodes[J]. Angewandte Chemie International Edition, 2024, 63(33): e202408246. DOI: 10.1002/anie.202408246. |
56 | HONG S B, JANG Y R, KIM H, et al. Wet-processable binder in composite cathode for high energy density all-solid-state lithium batteries[J]. Advanced Energy Materials, 2024: 2400802. DOI: 10.1002/aenm.202400802. |
57 | SONG Z Y, WANG T R, DAI Y M, et al. A sintering-free cathode for garnet-based all-solid-state Li metal batteries[J]. Advanced Energy Materials, 2024, 14(20): 2304543. DOI: 10.1002/aenm. 202304543. |
58 | SONG Z Y, DAI Y M, WANG T R, et al. An active halide catholyte boosts the extra capacity for all-solid-state batteries[J]. Advanced Materials, 2024, 36(33): e2405277. DOI: 10.1002/adma. 202405277. |
59 | YANG M, WU Y J, YANG K Q, et al. High-areal-capacity and long-cycle-life all-solid-state lithium-metal battery by mixed-conduction interface layer[J]. Advanced Energy Materials, 2024, 14(15): 2303229. DOI: 10.1002/aenm.202303229. |
60 | JUN D, LEE S G, JUNG J E, et al. Oxide-based nanoporous interlayer for durable anodic interface in all-solid-state lithium metal batteries[J]. ACS Energy Letters, 2024, 9(7): 3475-3483. DOI: 10.1021/acsenergylett.4c01360. |
61 | SONG L B, LI R H, ZHU H T, et al. Deeply lithiated carbonaceous materials for great lithium metal protection in all-solid-state batteries[J]. Advanced Materials, 2024, 36(26): 2400165. DOI: 10.1002/adma.202400165. |
62 | KIM K H, LEE M J, RYU M, et al. Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries[J]. Nature Communications, 2024, 15(1): 3586. DOI: 10.1038/s41467-024-48021-w. |
63 | LI G Y, WU S P, GAO C L, et al. In situ polymerized polydioxolane interlayer enabled dendrite-free argyrodite-based solid-state batteries[J]. Nano Energy, 2024, 127: 109786. DOI: 10.1016/j.nanoen.2024.109786. |
64 | BRAKS L, ZHANG J S, FORSTER A, et al. Interfacial stabilization by prelithiated trithiocyanuric acid as an organic additive in sulfide-based all-solid-state lithium metal batteries[J]. Angewandte Chemie, 2024, 63(35): e202408238. DOI: 10.1002/anie.202408238. |
65 | DUAN H H, LIU J H, HE J F, et al. High-modulus solid electrolyte interphase layer with gradient composition enables long-cycle all-solid-state lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2024, 98: 87-95. DOI: 10.1016/j.jechem.2024.06.026. |
66 | DING C, LU Y, PU L H, et al. InF3 initiated ionic/electronic conductive SEI for highly stable solid-state lithium sulfur batteries[J]. Journal of Energy Storage, 2024, 91: 112011. DOI: 10.1016/j.est.2024.112011. |
67 | XU S J, CHENG X B, YANG S J, et al. Performance enhancement of the Li6PS5Cl-based solid-state batteries by scavenging lithium dendrites with LaCl3-based electrolyte[J]. Advanced Materials, 2024, 36(15): e2310356. DOI: 10.1002/adma.202310356. |
68 | LIU Y, HAN J, BAEK D H, et al. Unlocking high-energy solid-state lithium-sulfur batteries with an innovative double-layer hybrid solid electrolyte[J]. Chemical Engineering Journal, 2024, 496: 153647. DOI: 10.1016/j.cej.2024.153647. |
69 | ZHANG M, WANG H L, SHAO A H, et al. Enabling 4.5 V solid polymer batteries through a 10 µm, crosslinked polyether electrolyte[J]. Advanced Energy Materials, 2024, 14(14): 2303932. DOI: 10.1002/aenm.202303932. |
70 | WANG B, WANG L, MAMOOR M, et al. Manipulating atomic-coupling in dual-cavity boride nanoreactor to achieve hierarchical catalytic engineering for sulfur cathode[J]. Angewandte Chemie, 2024: e202406065. DOI: 10.1002/anie.202406065. |
71 | LI G P, LIU Y, SCHULTZ T, et al. One-pot synthesis of high-capacity sulfur cathodes via in situ polymerization of a porous imine-based polymer[J]. Angewandte Chemie International Edition, 2024, 63(28): e202400382. DOI: 10.1002/anie.202400382. |
72 | GUO Q Y, WANG C, SHANG J, et al. A freestanding, dissolution- and diffusion-limiting, flexible sulfur electrode enables high specific capacity at high mass loading[J]. Advanced Materials, 2024, 36(25): e2400041. DOI: 10.1002/adma.202400041. |
73 | BONILLA Á, ORTEGA-MORENO G A, BERNINI M C, et al. MIL-100(Fe) MOF as an emerging sulfur-host cathode for ultra long-cycle metal-sulfur batteries[J]. Journal of Power Sources, 2024, 608: 234613. DOI: 10.1016/j.jpowsour.2024.234613. |
74 | CHEN J Z, HOU Y L, ZHANG B H, et al. Construction of an ohmic contact cathode by two metal sulfides for efficient capture and catalysis of polysulfide[J]. Small, 2024: e2403871. DOI: 10.1002/smll.202403871. |
75 | SUN Q, REN X Y, JIANG C H, et al. Steering sulfur reduction pathways via cisplatin enables high performance in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2024: e202403618. DOI: 10.1002/anie.202403618. |
76 | ZHOU R, REN Y Q, LI W X, et al. Rare earth single-atom catalysis for high-performance Li-S full battery with ultrahigh capacity[J]. Angewandte Chemie International Edition, 2024, 63(31): e202405417. DOI: 10.1002/anie.202405417. |
77 | CHEN W, HU Y, LIU Y P, et al. Ultralong cycling and safe lithium-sulfur pouch cells for sustainable energy storage[J]. Advanced Materials, 2024, 36(21): 2312880. DOI: 10.1002/adma.202312880. |
78 | PHAN A L, NAN B, LE P M L, et al. Lightweight electrolyte design for Li/sulfurized polyacrylonitrile (SPAN) batteries[J]. Advanced Materials, 2024: e2406594. DOI: 10.1002/adma.202406594. |
79 | LEE D, SHIM Y, KIM Y, et al. Shear force effect of the dry process on cathode contact coverage in all-solid-state batteries[J]. Nature Communications, 2024, 15: 4763. DOI: 10.1038/s41467-024-49183-3. |
80 | WANG Z K, ZHANG Y, PAN Y R, et al. Polyacrylonitrile based triblock copolymer binder enabling excellent performance toward LiNi0.5Mn1.5O4 and sulfur based batteries[J]. ACS Applied Materials & Interfaces, 2024, 16(30): 39942-39951. DOI: 10.1021/acsami.4c03545. |
81 | KANG D, LEE K, RYU H, et al. Separator-driven synergistic suppression of Li dendrite for > 2600 cycles with simultaneous 10C rate capability[J]. Chemical Engineering Journal, 2024, 483: 149378. DOI: 10.1016/j.cej.2024.149378. |
82 | PENG Y, FENG X N, XIA J Z, et al. Polymer based multi-layer Al composite current collector improves battery safety[J]. Chemical Engineering Journal, 2024, 491: 151474. DOI: 10.1016/j.cej. 2024.151474. |
83 | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel electrolyte[J]. Nature, 2024, 629(8010): 86-91. DOI: 10.1038/s41586-024-07343-x. |
84 | LI M, WU J X, YOU Z C, et al. Crown ether electrolyte induced Li2O2 amorphization for low polarization and long lifespan Li-O2 batteries[J]. Angewandte Chemie International Edition, 2024, 63(27): e202403521. DOI: 10.1002/anie.202403521. |
85 | TAYAL A, BARAI P, ZHONG H, et al. In situ insights into cathode calcination for predictive synthesis: Kinetic crystallization of LiNiO2 from hydroxides[J]. Advanced Materials, 2024, 36(21): e2312027. DOI: 10.1002/adma.202312027. |
86 | GAMO H, MAEDA Y, KIYOBAYASHI T, et al. Elucidating the mechanism of microscopic conduction in cathode composites for all-solid-state batteries through scanning spreading resistance microscopy[J]. Journal of Materials Chemistry A, 2024, 12(24): 14380-14388. DOI: 10.1039/D4TA01634C. |
87 | LI F, WU Y C, CHENG X B, et al. Unraveling the interfacial compatibility of ultrahigh nickel cathodes and chloride solid electrolyte for stable all-solid-state lithium batteries[J]. Energy & Environmental Science, 2024, 17(12): 4187-4195. DOI: 10.1039/D4EE01302F. |
88 | WANG C Y, JING Y Q, ZHU D, et al. Atomic origin of chemomechanical failure of layered cathodes in all-solid-state batteries[J]. Journal of the American Chemical Society, 2024, 146(26): 17712-17718. DOI: 10.1021/jacs.4c02198. |
89 | JO S, SEO S, KANG S K, et al. Thermal runaway mechanism in Ni-rich cathode full cells of lithium-ion batteries: The role of multidirectional crosstalk[J]. Advanced Materials, 2024, 36(31): e2402024. DOI: 10.1002/adma.202402024. |
90 | CHEN Z D, DOU R F, PENG H L, et al. Numerical and experimental study on the calcination process of the raw materials of lithium battery cathode[J]. Case Studies in Thermal Engineering, 2024, 55: 104122. DOI: 10.1016/j.csite.2024.104122. |
91 | DONG L W, YAN H J, LIU Q X, et al. Quantification of charge transport and mass deprivation in solid electrolyte interphase for kinetically-stable low-temperature lithium-ion batteries[J]. Angewandte Chemie International Edition, 2024: e202411029. DOI: 10.1002/anie.202411029. |
92 | CHEN L, ZHANG H K, LI R H, et al. Dynamic shielding of electrified interface enables high-voltage lithium batteries[J]. Chem, 2024, 10(4): 1196-1212. DOI: 10.1016/j.chempr.2024.01.001. |
93 | SHAH N J, FANG C, OSTI N C, et al. Nanosecond solvation dynamics in a polymer electrolyte for lithium batteries[J]. Nature Materials, 2024, 23(5): 664-669. DOI: 10.1038/s41563-024-01834-y. |
94 | GUO W D, SUN Z C, GUO J, et al. Digital twin-assisted degradation diagnosis and quantification of NMC battery aging effects during fast charging[J]. Advanced Energy Materials, 2024: 2401644. DOI: 10.1002/aenm.202401644. |
95 | BADAMI P P, TRASK S E, SON S B, et al. Examining performance loss mechanisms in lithium-ion batteries with the high-voltage Mn-rich spinel positive electrodes[J]. Journal of the Electrochemical Society, 2024, 171(4): 040517. DOI: 10.1149/1945-7111/ad3ad4. |
96 | LI M, ZHANG Y L, ZHOU H, et al. Lithium inventory tracking as a non-destructive battery evaluation and monitoring method[J]. Nature Energy, 2024, 9: 612-621. DOI: 10.1038/s41560-024-01476-z. |
97 | CHEN S S, TANG Y H, LU Z X, et al. Disparity among cyclic alkyl carbonates associated with the cathode-electrolyte interphase at high voltage[J]. Journal of Materials Chemistry A, 2024, 12(28): 17360-17368. DOI: 10.1039/d4ta01759e. |
98 | CHOE G, KIM H, KWON J, et al. Re-evaluation of battery-grade lithium purity toward sustainable batteries[J]. Nature Communications, 2024, 15(1): 1185. DOI: 10.1038/s41467-024-44812-3. |
99 | MA J, WANG J X, JIA K, et al. Subtractive transformation of cathode materials in spent Li-ion batteries to a low-cobalt 5 V-class cathode material[J]. Nature Communications, 2024, 15(1): 1046. DOI: 10.1038/s41467-024-45091-8. |
100 | CHEN F, CHEN T X, WU Z X, et al. Optimizing lithium-ion battery electrode manufacturing: Advances and prospects in process simulation[J]. Journal of Power Sources, 2024, 610: 234717. DOI: 10.1016/j.jpowsour.2024.234717. |
[1] | 陈星光, 沈逸凡, 邵裕新, 郑岳久, 孙涛, 来鑫, 沈凯, 韩雪冰. 面向实车应用的磷酸铁锂电池容量辨识及特异性优化方法研究[J]. 储能科学与技术, 2024, 13(9): 2963-2971. |
[2] | 黎耀康, 杨海东, 徐康康, 蓝昭宇, 章润楠. 基于加权UMAP和改进BLS的锂电池温度预测[J]. 储能科学与技术, 2024, 13(9): 3006-3015. |
[3] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[4] | 刘莹, 孙丙香, 赵鑫泽, 张珺玮. 基于电热耦合模型的宽温域锂离子电池SOC/SOP联合估计[J]. 储能科学与技术, 2024, 13(9): 3030-3041. |
[5] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[6] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[7] | 杨凯悦, 谢欣兵, 杜晓钟. 基于离散元法的锂电池极片辊压过程探究[J]. 储能科学与技术, 2024, 13(8): 2570-2579. |
[8] | 陈峥, 杨博, 赵志刚, 申江卫, 肖仁鑫, 夏雪磊. 考虑锂电池温度和老化的荷电状态估算[J]. 储能科学与技术, 2024, 13(8): 2813-2822. |
[9] | 张结雨, 张顺, 李宁, 曾芳磊, 丁建宁. 阻燃凝胶聚合物电解质的制备及其性能研究[J]. 储能科学与技术, 2024, 13(8): 2529-2540. |
[10] | 许超锋, 韩晓蕾, 王进芝, 王晓君, 刘治明, 赵井文. 基于弱配位环境的晶态锌离子固态电解质[J]. 储能科学与技术, 2024, 13(8): 2519-2528. |
[11] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[12] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[13] | 周洪, 辛竹琳, 付豪, 张强, 魏凤. 基于专利数据挖掘的固态锂电池关键材料分析[J]. 储能科学与技术, 2024, 13(7): 2386-2398. |
[14] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
[15] | 李宗迅, 吕秋秋, 赵浩宇, 贺建宇, 刘阳, 孙再洪, 孙凯华, 朱腾龙. 工业尺寸阳极支撑SOFC亚微米GDC隔离层的制备及性能[J]. 储能科学与技术, 2024, 13(7): 2407-2413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||