储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3214-3225.doi: 10.19799/j.cnki.2095-4239.2024.0604

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

基于大语言模型RAG架构的电池加速研究:现状与展望

钟逸1(), 冷彦1(), 陈思慧1, 李培义1, 邹智1, 刘洋2(), 万佳雨1()   

  1. 1.上海交通大学溥渊未来技术学院,未来电池研究中心,上海 200240
    2.昆山杜克大学数据科学研究中心,江苏 昆山 215316
  • 收稿日期:2024-07-03 修回日期:2024-08-11 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 刘洋,万佳雨 E-mail:zhongyeah@sjtu.edu.cn;ly234244@sjtu.edu.cn;yang.liu2@dukekunshan.edu.cn;wanjy@sjtu.edu.cn
  • 作者简介:钟逸(2005—),男,本科,从事人工智能的可再生能源应用,E-mail:zhongyeah@sjtu.edu.cn
    冷彦(2001—),男,硕士研究生,从事锂离子电池先进材料的开发、人工智能的可再生能源应用,E-mail:ly234244@sjtu.edu.cn

Accelerating battery research with retrieval-augmented large language models: Present and future

Yi ZHONG1(), Yan LENG1(), Sihui CHEN1, Peiyi LI1, Zhi ZOU1, Yang LIU2(), Jiayu WAN1()   

  1. 1.Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Data Science Research Center, Duke Kunshan University, Kunshan 215316, Jiangsu, China
  • Received:2024-07-03 Revised:2024-08-11 Online:2024-09-28 Published:2024-09-20
  • Contact: Yang LIU, Jiayu WAN E-mail:zhongyeah@sjtu.edu.cn;ly234244@sjtu.edu.cn;yang.liu2@dukekunshan.edu.cn;wanjy@sjtu.edu.cn

摘要:

随着近年电池领域研究投入的激增,研究人员面临着前所未有的信息过载和知识盲区的挑战。针对这一问题,本文探讨了大语言模型(large language model,LLM)的检索增强生成(retrieval augmented generation,RAG)架构在电池领域的应用潜力,在此基础上对近期的研究文献进行综述,并提出展望。本文介绍了大语言模型RAG架构的工作原理,强调了该架构在垂直领域的可靠性,并基于此综述探讨了该架构在电池材料设计、电池单元设计和制造、电动交通与电网的电池管理系统三个领域的潜在应用。在电池材料设计部分,本文着重分析了大语言模型RAG架构的无幻觉生成能力在数据提取、研究方案设计和多模态数据问答中的优势。在电池单元设计和制造部分,本文从科研端指出该架构对电池单元设计方案分析的辅助作用,从制造端指出该架构桥接产业和科研的鸿沟、辅助产业管控的作用。在电动交通和电网的电池管理系统部分,本文指出该架构在跨领域知识联结、辅助系统级运维的作用。最后,本文讨论了多模态RAG技术在电池研究领域的应用潜力及其对电池研究效率的提升,并展望了RAG在电池领域的更多应用前景。

关键词: 大语言模型, 检索增强生成, 电池材料, 电芯, 电池管理系统

Abstract:

In recent years, the surge in research investment within the battery field has presented researchers with challenges of information overload and knowledge gaps. This study examines the Retrieval-Augmented Generation (RAG) architecture of large language models in the battery domain, offering a review of contemporary research and future prospects. We describe the working principles of the RAG architecture, affirm its reliability in specialized domains, and discuss its applications across three key areas as follows: battery material design, battery cell design and manufacturing, and battery management systems for e-mobility and electric grids. In the section on battery material design, the study highlights the hallucination-free generation capabilities of RAG in data extraction, research protocol design, and multimodal data querying. The section on battery cell design and manufacturing elucidates RAG's role in enhancing research-driven battery cell design and bridging the gap between industry and academia, thereby aiding industrial control processes. The discussion on battery management systems for e-mobility and electric grids underscores RAG's contribution to cross-domain knowledge integration and system-level operation and maintenance support. The study concludes by considering the application of multimodal RAG technology in battery research and anticipates further expansion of RAG applications in this field.

Key words: large language model, retrieval augmented generation, battery material, battery cell, battery management system

中图分类号: