储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3214-3225.doi: 10.19799/j.cnki.2095-4239.2024.0604
钟逸1(), 冷彦1(
), 陈思慧1, 李培义1, 邹智1, 刘洋2(
), 万佳雨1(
)
收稿日期:
2024-07-03
修回日期:
2024-08-11
出版日期:
2024-09-28
发布日期:
2024-09-20
通讯作者:
刘洋,万佳雨
E-mail:zhongyeah@sjtu.edu.cn;ly234244@sjtu.edu.cn;yang.liu2@dukekunshan.edu.cn;wanjy@sjtu.edu.cn
作者简介:
钟逸(2005—),男,本科,从事人工智能的可再生能源应用,E-mail:zhongyeah@sjtu.edu.cn
Yi ZHONG1(), Yan LENG1(
), Sihui CHEN1, Peiyi LI1, Zhi ZOU1, Yang LIU2(
), Jiayu WAN1(
)
Received:
2024-07-03
Revised:
2024-08-11
Online:
2024-09-28
Published:
2024-09-20
Contact:
Yang LIU, Jiayu WAN
E-mail:zhongyeah@sjtu.edu.cn;ly234244@sjtu.edu.cn;yang.liu2@dukekunshan.edu.cn;wanjy@sjtu.edu.cn
摘要:
随着近年电池领域研究投入的激增,研究人员面临着前所未有的信息过载和知识盲区的挑战。针对这一问题,本文探讨了大语言模型(large language model,LLM)的检索增强生成(retrieval augmented generation,RAG)架构在电池领域的应用潜力,在此基础上对近期的研究文献进行综述,并提出展望。本文介绍了大语言模型RAG架构的工作原理,强调了该架构在垂直领域的可靠性,并基于此综述探讨了该架构在电池材料设计、电池单元设计和制造、电动交通与电网的电池管理系统三个领域的潜在应用。在电池材料设计部分,本文着重分析了大语言模型RAG架构的无幻觉生成能力在数据提取、研究方案设计和多模态数据问答中的优势。在电池单元设计和制造部分,本文从科研端指出该架构对电池单元设计方案分析的辅助作用,从制造端指出该架构桥接产业和科研的鸿沟、辅助产业管控的作用。在电动交通和电网的电池管理系统部分,本文指出该架构在跨领域知识联结、辅助系统级运维的作用。最后,本文讨论了多模态RAG技术在电池研究领域的应用潜力及其对电池研究效率的提升,并展望了RAG在电池领域的更多应用前景。
中图分类号:
钟逸, 冷彦, 陈思慧, 李培义, 邹智, 刘洋, 万佳雨. 基于大语言模型RAG架构的电池加速研究:现状与展望[J]. 储能科学与技术, 2024, 13(9): 3214-3225.
Yi ZHONG, Yan LENG, Sihui CHEN, Peiyi LI, Zhi ZOU, Yang LIU, Jiayu WAN. Accelerating battery research with retrieval-augmented large language models: Present and future[J]. Energy Storage Science and Technology, 2024, 13(9): 3214-3225.
3 | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. 2021: 2103.00020.[2024-06-30]. https://arxiv.org/abs/2103.00020v1 |
4 | OpenAI. Hello GPT-4o[EB/OL]. [2024-06-30]. https://openai.com/index/hello-gpt-4o/ |
5 | OpenAI. SORA[EB/OL]. [2024-06-30]. https://openai.com/sora |
6 | BUEHLER M J. Generative retrieval-augmented ontologic graph and multiagent strategies for interpretive large language model-based materials design[J]. ACS Engineering Au, 2024, 4(2): 241-277. DOI: 10.1021/acsengineeringau.3c00058. |
7 | BRAN A M, COX S, SCHILTER O, et al. Augmenting large language models with chemistry tools[J]. Nature Machine Intelligence, 2024, 6(5): 525-535. DOI: 10.1038/s42256-024-00832-8. |
8 | BOIKO D A, MACKNIGHT R, KLINE B, et al. Autonomous chemical research with large language models[J]. Nature, 2023, 624(7992): 570-578. DOI: 10.1038/s41586-023-06792-0. |
9 | KANG Y, KIM J. ChatMOF: An artificial intelligence system for predicting and generating metal-organic frameworks using large language models[J]. Nature Communications, 2024, 15(1): 4705. DOI: 10.1038/s41467-024-48998-4. |
10 | ZHENG Z L, ZHANG O F, BORGS C, et al. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis[J]. Journal of the American Chemical Society, 2023, 145(32): 18048-18062. DOI: 10.1021/jacs.3c05819. |
11 | JI Z W, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[EB/OL]. 2022: 2202.03629.[2024-06-30]. https://arxiv.org/abs/2202.03629v7 |
12 | 吴思远, 王雪龙, 肖睿娟, 等. 基于大型语言模型的工具对电池研究的机遇与挑战[J]. 储能科学与技术, 2023, 12(3): 992-997. DOI: 10.19799/j.cnki.2095-4239.2023.0071. |
WU S Y, WANG X L, XIAO R J, et al. Problem and perspective for battery researcher based on large language model[J]. Energy Storage Science and Technology, 2023, 12(3): 992-997. DOI: 10.19799/j.cnki.2095-4239.2023.0071. | |
13 | KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13): 3521-3526. DOI: 10.1073/pnas.1611835114. |
14 | TINN R, CHENG H, GU Y, et al. Fine-tuning large neural language models for biomedical natural language processing[J]. Patterns, 2023, 4(4): 100729. DOI: 10.1016/j.patter.2023.100729. |
15 | MOSBACH M, ANDRIUSHCHENKO M, KLAKOW D. On the stability of fine-tuning BERT: Misconceptions, explanations, and strong baselines[EB/OL]. 2020: 2006.04884.[2024-06-30]. https://arxiv.org/abs/2006.04884v3 |
16 | KIM Y, OH J, KIM S, et al. How to fine-tune models with few samples: Update, data augmentation, and test-time augmentation[EB/OL]. 2022: 2205.07874.[2024-06-30].https://arxiv.org/abs/2205.07874v3 |
17 | CHEN J W, LIN H Y, HAN X P, et al. Benchmarking large language models in retrieval-augmented generation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(16): 17754-17762. DOI: 10.1609/aaai.v38i16.29728. |
18 | GAO Y F, XIONG Y, GAO X Y, et al. Retrieval-augmented generation for large language models: A survey[EB/OL]. 2023: 2312.10997.[2024-06-30]. https://arxiv.org/abs/2312.10997v5 |
19 | EIBICH M, NAGPAL S, FRED-OJALA A. ARAGOG: Advanced RAG output grading[EB/OL]. 2024: 2404.01037.[2024-06-30]. https://arxiv.org/abs/2404.01037v1 |
20 | PAN S R, LUO L H, WANG Y F, et al. Unifying large language models and knowledge graphs: A roadmap[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7): 3580-3599. DOI: 10.1109/TKDE.2024.3352100. |
21 | ZHANG J, SUTING W, ZHAOXIANG W, et al. Solid electrolyte interphase (SEI) on graphite anode correlated with thermal runaway of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2105-2118. |
22 | WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. NPJ Computational Materials, 2018, 4: 15. DOI: 10.1038/s41524-018-0064-0. |
23 | WANG X X, NI L, XIE Q X, et al. Highly electrocatalytic active amorphous Al2O3 in porous carbon assembled on carbon cloth as an independent multifunctional interlayer for advanced lithium-sulfur batteries[J]. Applied Surface Science, 2023, 618: 156689. DOI: 10.1016/j.apsusc.2023.156689. |
24 | LAI G M, JIAO J Y, FANG C, et al. The mechanism of Li deposition on the Cu substrates in the anode-free Li metal batteries[J]. Small, 2023, 19(3): e2205416. DOI: 10.1002/smll. 202205416. |
25 | WANG F, SUN Y, CHENG J. Switching of redox levels leads to high reductive stability in water-in-salt electrolytes[J]. Journal of the American Chemical Society, 2023, 145(7): 4056-4064. DOI: 10.1021/jacs.2c11793. |
26 | HAN X, GU L H, SUN Z F, et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries[J]. Energy & Environmental Science, 2023, 16(11): 5395-5408. DOI: 10.1039/D3EE01696J. |
27 | CHEN G J, YU L W, GAN Y H, et al. Reinforcing the stability of cobalt-free lithium-rich layered oxides via Li-poor Ni-rich surface transformation[J]. Journal of Materials Chemistry A, 2024. DOI: 10.1039/d4ta01403k. |
28 | LI J, ZHOU M S, WU H H, et al. Machine learning-assisted property prediction of solid-state electrolyte[J]. Advanced Energy Materials, 2024, 14(20): 2304480. DOI: 10.1002/aenm.202304480. |
29 | MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85. DOI: 10.1038/s41586-023-06735-9. |
30 | XU J, XIAO R J, LI H. ESM cloud toolkit: A copilot for energy storage material research[J]. Chinese Physics Letters, 2024, 41(5): 054701. DOI: 10.1088/0256-307x/41/5/054701. |
31 | THIK J, WANG S W, WANG C H, et al. Realizing the cooking recipe of materials synthesis through large language models[J]. Journal of Materials Chemistry A, 2023, 11(47): 25849-25853. DOI: 10.1039/D3TA05457H. |
32 | DEB J, SAIKIA L, DIHINGIA K D, et al. ChatGPT in the material design: Selected case studies to assess the potential of ChatGPT[J]. Journal of Chemical Information and Modeling, 2024, 64(3): 799-811. DOI: 10.1021/acs.jcim.3c01702. |
33 | LIU Y, LI C, LI C X, et al. Porous, robust, thermally stable, and flame retardant nanocellulose/polyimide separators for safe lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(43): 23360-23369. DOI: 10.1039/d3ta05148j. |
34 | 凌仕刚, 许洁茹, 李泓. 锂电池研究中的EIS实验测量和分析方法[J]. 储能科学与技术, 2018, 7(4): 732-749. DOI: 10.12028/j.issn.2095-4239.2018.0092. |
LING S G, XU J R, LI H. Experimental measurement and analysis methods of electrochemical impedance spectroscopy for lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 732-749. DOI: 10.12028/j.issn.2095-4239.2018.0092. | |
35 | LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 3844-3860. DOI: 10.1039/C1EE01918J. |
36 | KITAHARA A R, HOLM E A. Microstructure cluster analysis with transfer learning and unsupervised learning[J]. Integrating Materials and Manufacturing Innovation, 2018, 7(3): 148-156. DOI: 10.1007/s40192-018-0116-9. |
37 | ZHANG Y, LIN X Y, ZHAI W B, et al. Machine learning on microstructure-property relationship of lithium-ion conducting oxide solid electrolytes[J]. Nano Letters, 2024, 24(17): 5292-5300. DOI: 10.1021/acs.nanolett.4c00902. |
38 | KUSCHE C, RECLIK T, FREUND M, et al. Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning[J]. PLoS One, 2019, 14(5): e0216493. DOI: 10.1371/journal.pone.0216493. |
39 | WANG Z H, ZHOU X Z, ZHANG W G, et al. Parameter sensitivity analysis and parameter identifiability analysis of electrochemical model under wide discharge rate[J]. Journal of Energy Storage, 2023, 68: 107788. DOI: 10.1016/j.est.2023.107788. |
40 | 黄晟贤,徐会升,王起鹏,等.冲击荷载下圆柱型动力锂离子电池的响应特性研究[J/OL].储能科学与技术.[2024-05-05]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0274. |
HUANG S, XU H, WANG Q, et al. Study on the Response characteristics of cylindrical power lithium-ion batteries under impact load[J/OL]. Energy Storage Science and Technology. [2024-05-05]. https://doi.org/10.19799/j.cnki.2095-4239.2024.0274. | |
41 | WU X K, SONG K F, ZHANG X Y, et al. Safety issues in lithium ion batteries: Materials and cell design[J]. Frontiers in Energy Research, 2019, 7: 65. DOI: 10.3389/fenrg.2019.00065. |
42 | OAKLEY J. Intelligent cognitive assistants [EB/OL].[2024-06-30]. https://www.src.org/program/ica/ |
43 | KERNAN FREIRE S, FOOSHERIAN M, WANG C F, et al. Harnessing large language models for cognitive assistants in factories[C]// Proceedings of the 5th International Conference on Conversational User Interfaces. ACM, 2023: 1-6. DOI: 10.1145/3571884.3604313. |
44 | CHEN H S, HOU L, WU S Z, et al. Augmented reality, deep learning and vision-language query system for construction worker safety[J]. Automation in Construction, 2024, 157: 105158. DOI: 10.1016/j.autcon.2023.105158. |
1 | VASWANI A, SHAZEER N, PARMER N, et al. Attention is all you need[J]. arXiv preprint arXiv:, 2017. |
2 | ZHAO S, CHEN S H, ZHOU J Y, et al. Potential to transform words to Watts with large language models in battery research[J]. Cell Reports Physical Science, 2024, 5(3): 101844. DOI: 10.1016/j.xcrp.2024.101844. |
45 | PERES R S, JIA X D, LEE J, et al. Industrial artificial intelligence in industry 4.0 - Systematic review, challenges and outlook[J]. IEEE Access, 2874, 8: 220121-220139. DOI: 10.1109/ACCESS. 2020.3042874. |
46 | GUO N L, CHEN S H, TAO J, et al. Semi-supervised learning for explainable few-shot battery lifetime prediction[J]. Joule, 2024, 8(6): 1820-1836. DOI: 10.1016/j.joule.2024.02.020. |
47 | TRIVEDI C, BHATTACHARYA P, PRASAD V K, et al. Explainable AI for industry 5.0: Vision, architecture, and potential directions[J]. IEEE Open Journal of Industry Applications, 2024, 5: 177-208. DOI: 10.1109/OJIA.2024.3399057. |
48 | ZHOU B, LI X Y, LIU T Y, et al. CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing[J]. Advanced Engineering Informatics, 2024, 59: 102333. DOI: 10.1016/j.aei.2023.102333. |
49 | LIN T Z, CHEN S H, HARRIS S J, et al. Investigating explainable transfer learning for battery lifetime prediction under state transitions[J]. eScience, 2024: 100280. DOI: 10.1016/j.esci. 2024.100280. |
50 | 朱伟杰, 史尤杰, 雷博. 锂离子电池储能系统BMS的功能安全分析与设计[J]. 储能科学与技术, 2020, 9(1): 271-278. DOI: 10.19799/j.cnki.2095-4239.2019.0177. |
ZHU W J, SHI Y J, LEI B. Functional safety analysis and design of BMS for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2020, 9(1): 271-278. DOI: 10.19799/j.cnki.2095-4239.2019.0177. | |
51 | SHEN M, GAO Q. A review on battery management system from the modeling efforts to its multiapplication and integration[J]. International Journal of Energy Research, 2019, 43(10): 5042-5075. |
52 | RAHIMI-EICHI H, OJHA U, BARONTI F, et al. Battery management system: An overview of its application in the smart grid and electric vehicles[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 4-16. DOI: 10.1109/MIE.2013.2250351. |
53 | LIU Y, CHEN S H, LI P Y, et al. Status, challenges, and promises of data-driven battery lifetime prediction under cyber-physical system context[J]. IET Cyber-Physical Systems: Theory & Applications, 2024. DOI: 10.1049/cps2.12086. |
54 | LU T, ZHAI X A, CHEN S H, et al. Robust battery lifetime prediction with noisy measurements via total-least-squares regression[J]. Integration, 2024, 96: 102136. DOI: 10.1016/j.vlsi. 2023.102136. |
55 | LAWDER M T, SUTHAR B, NORTHROP P W C, et al. Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications[J]. Proceedings of the IEEE, 2014, 102(6): 1014-1030. DOI: 10.1109/JPROC.2014.2317451. |
56 | MISHRA S, SWAIN S C, SAMANTARAY R K. A Review on battery management system and its application in electric vehicle[C]// 2021 International Conference on Advances in Computing and Communications (ICACC). IEEE, 2021: 1-6. DOI: 10.1109/ICACC-202152719.2021.9708114. |
57 | WANG J, FENG X N, YU Y Z, et al. Rapid temperature-responsive thermal regulator for safety management of battery modules[J]. Nature Energy, 2024, 9: 939-946. DOI: 10.1038/s41560-024-01535-5. |
58 | CHEN X J, JIA S B, XIANG Y. A review: Knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. DOI: 10.1016/j.eswa.2019.112948. |
59 | XIONG R, LI L L, TIAN J P. Towards a smarter battery management system: A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. DOI: 10.1016/j.jpowsour.2018.10.019. |
60 | ZHAO X Z, SUN B X, ZHANG W G, et al. Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries[J]. Applied Energy, 2024, 353: 121992. DOI: 10.1016/j.apenergy.2023.121992. |
61 | XIONG R, SUN Y, WANG C X, et al. A data-driven method for extracting aging features to accurately predict the battery health[J]. Energy Storage Materials, 2023, 57: 460-470. DOI: 10.1016/j.ensm.2023.02.034. |
62 | WANG W T, YANG K Y, ZHANG L S, et al. An end-cloud collaboration approach for online state-of-health estimation of lithium-ion batteries based on multi-feature and transformer[J]. Journal of Power Sources, 2024, 608: 234669. DOI: 10.1016/j.jpowsour.2024.234669. |
63 | 吴思远, 李泓. 发展基于"语义检测" 的低参数量、多模态预训练电池通用人工智能模型[J]. 储能科学与技术, 2024, 13(4): 1216-1224. DOI: 10.19799/j.cnki.2095-4239.2024.0092. |
WU S Y, LI H. Developing a general pretrained multimodal battery model with small parameters based on semantic detection[J]. Energy Storage Science and Technology, 2024, 13(4): 1216-1224. DOI: 10.19799/j.cnki.2095-4239.2024.0092. | |
64 | WU S Q, FEI H, QU L G, et al. NExT-GPT: Any-to-any multimodal LLM[EB/OL]. 2023: 2309.05519. https://arxiv.org/abs/2309. 05519v3 |
65 | JABLONKA K M, AI Q X, AL-FEGHALI A, et al. 14 examples of how LLMs can transform materials science and chemistry: A reflection on a large language model hackathon[J]. Digital Discovery, 2023, 2(5): 1233-1250. DOI: 10.1039/d3dd00113j. |
66 | BRUCKHAUS T. RAG does not work for enterprises[EB/OL]. 2024: 2406.04369.[2024-06-30]. https://arxiv.org/abs/2406.04369v1 |
67 | LIU Y, HUANG L Z, LI S C, et al. RECALL: A benchmark for LLMs robustness against external counterfactual knowledge[EB/OL]. 2023: 2311.08147.[2024-06-30]. https://arxiv.org/abs/2311.08147v1 |
68 | ANDERSON M, AMIT G, GOLDSTEEN A. Is my data in your retrieval database? membership inference attacks against retrieval augmented generation[EB/OL]. 2024: 2405.20446.[2024-06-30]. https://arxiv.org/abs/2405.20446v2 |
[1] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
[2] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[3] | 朱振威, 苗嘉伟, 祝夏雨, 王晓旭, 邱景义, 张浩. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. |
[4] | 童文欣, 黄中垣, 王睿, 邓司浩, 何伦华, 肖荫果. 基于空间分辨中子衍射方法的锂离子电池电化学反应均匀性研究[J]. 储能科学与技术, 2024, 13(1): 72-81. |
[5] | 张奇, 李晓东, 王文雯, 刘晓. 生物质纤维素基多功能材料构建及其在新型能量存储方面的应用[J]. 储能科学与技术, 2023, 12(5): 1427-1443. |
[6] | 邓林旺, 冯天宇, 舒时伟, 张子峰, 郭彬. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2879-2890. |
[7] | 刘春辉, 任宏斌. 基于SOC的动力电池组主动均衡研究[J]. 储能科学与技术, 2022, 11(2): 667-672. |
[8] | 梁新成, 张 勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. |
[9] | 朱伟杰, 史尤杰, 雷博. 锂离子电池储能系统BMS的功能安全分析与设计[J]. 储能科学与技术, 2020, 9(1): 271-278. |
[10] | 罗勇, 赵小帅, 祁朋伟, 刘增玥, 邓涛, 李沛然. 车用动力电池二阶RC建模及参数辨识[J]. 储能科学与技术, 2019, 8(4): 738-744. |
[11] | 李荣辉, 孔令丽, 王纪威, 李文轩, 樊沁娜. 钛酸锂电芯正负极容量匹配设计及其对电芯性能影响[J]. 储能科学与技术, 2019, 8(1): 191-194. |
[12] | 陈诗璇,金 鹏. LTC6803在镍氢电池储能管理系统中的应用[J]. 储能科学与技术, 2017, 6(S1): 31-. |
[13] | 罗红斌,邓林旺,冯天宇,吕 纯. LiFePO4锂离子动力电池内阻与放电倍率关系研究[J]. 储能科学与技术, 2017, 6(4): 799-805. |
[14] | 张 建1,郭慰问1,2,邹海曙3,邵光杰2,娄豫皖1,夏保佳1. 100 kW/200 kW·h氢镍电池储能系统[J]. 储能科学与技术, 2016, 5(4): 596-601. |
[15] | 吴娇杨,刘 品,胡勇胜,李 泓. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||