储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3198-3213.doi: 10.19799/j.cnki.2095-4239.2024.0635

• AI辅助先进电池设计与应用专刊 • 上一篇    下一篇

电池大数据智能分析平台的研发与应用

焦君宇1,2,3(), 张全權2(), 陈宁波2, 王冀钰2, 芦秋迪2, 丁浩浩2, 彭鹏3, 宋孝河3, 张帆3, 郑家新1,3()   

  1. 1.北京大学深圳研究生院,广东 深圳 518052
    2.上海艮芯科技,上海 200135
    3.深圳屹艮 科技,广东 深圳 518052
  • 收稿日期:2024-07-08 修回日期:2024-07-28 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 郑家新 E-mail:jiaojunyu@eacomp.com;zhangquanquan@eacomp.com;zhengjx@pkusz.edu.cn
  • 作者简介:焦君宇(1993—),男,博士,首席技术官,研究方向为电池大数据分析,E-mail:jiaojunyu@eacomp.com
    张全權,男,硕士,算法工程师,研究方向为电池大数据分析,E-mail:zhangquanquan@eacomp.com

Development and applications of an intelligent big data analysis platform for batteries

Junyu JIAO1,2,3(), Quanquan ZHANG2(), Ningbo CHEN2, Jiyu WANG2, Qiudi LU2, Haohao DING2, Peng PENG3, Xiaohe SONG3, Fan ZHANG3, Jiaxin ZHENG1,3()   

  1. 1.Peking University Shenzhen Graduate School, Shenzhen 518052, Guangdong, China
    2.Shanghai Genthm Technology Co. , Ltd. , Shanghai 200135, China
    3.Shenzhen Eacomp Technology Co. , Ltd. , Shenzhen 518052, Guangdong, China
  • Received:2024-07-08 Revised:2024-07-28 Online:2024-09-28 Published:2024-09-20
  • Contact: Jiaxin ZHENG E-mail:jiaojunyu@eacomp.com;zhangquanquan@eacomp.com;zhengjx@pkusz.edu.cn

摘要:

随着电动汽车和储能需求的持续增加,高性能电池的产量迅速上升,人们对电池先进制造的要求也越来越高。智能制造在电池行业中扮演着至关重要的角色,通过集成自动化技术、信息技术、计算仿真和人工智能,智能制造可以极大地提高生产效率和灵活性,减少人为错误,挖掘材料的内部机理,提高产品性能。基于人工智能的电池大数据分析技术是智能制造的重要一环,旨在通过高级数据分析技术,辅助研发人员开展各种电池的性能评估、预测与优化。为此,我们基于机器学习技术开发出一系列高效算法,实现电池大数据分析中的特征分析、电池一致性分析、电池健康状态估计以及电池剩余寿命预测等电池中常见的分析任务。此外,我们还提供了一个标准化的分析框架来全面分析电池数据、预测电池的性能,帮助研发人员直观理解复杂的数据集,并揭示数据中的模式和关系。 同时,我们还将这些算法集成到电池大数据分析平台——智芯工坊中,以解决现有的电池大数据分析平台数据集成度低、分析工具单一和可扩展性不足等问题。这些智能算法的普及与应用有助于人们实现电池的高效分析与智能管理,进而推动电池行业的数智化发展。

关键词: 锂电池, 大数据, 人工智能, 软件平台, 特征, 电池剩余寿命, 电池健康状态

Abstract:

As the demand for electric vehicles and energy storage continues to grow, the production of high-performance batteries is increasing rapidly, leading to more stringent requirements for advanced manufacturing processes. Smart manufacturing is vital in this context, leveraging automation technology, information systems, computational simulation, and artificial intelligence to enhance production efficiency and flexibility, minimize human errors, elucidate material mechanisms, and improve product performance. Battery data analysis platforms are critical for smart manufacturing, helping researchers predict and optimize various battery properties through advanced data analysis techniques. However, current battery big data analysis platforms encounter several challenges, including issues with data integration, limited analysis tools, poor user-friendliness, and insufficient scalability. To address these challenges, we have developed efficient algorithms using machine learning techniques for common tasks in battery data analysis, including feature analysis, battery consistency evaluation, state of health estimation, and remaining useful life prediction. Furthermore, we have created a specialized big data analysis platform for batteries named BatAi Craft. This platform uses comprehensive data analysis and performance prediction to help researchers intuitively understand complex battery datasets and uncover underlying patterns and relationships. By deploying these advanced algorithms, BatAi Craft improves the efficiency of battery analysis and intelligent management, driving the digital and smart advancement of the battery industry.

Key words: lithium battery, big data, artificial intelligence, software platform, features, lifespan, SOH

中图分类号: