储能科学与技术 ›› 2024, Vol. 13 ›› Issue (9): 3254-3265.doi: 10.19799/j.cnki.2095-4239.2024.0157

• 储能系统与工程 • 上一篇    下一篇

基于COA-LSTMVMD的锂离子电池剩余寿命预测

孙中麟(), 李嘉波(), 田迪, 王志璇, 邢晓静   

  1. 西安石油大学,陕西 西安 710000
  • 收稿日期:2024-02-28 修回日期:2024-03-11 出版日期:2024-09-28 发布日期:2024-09-20
  • 通讯作者: 李嘉波 E-mail:1748566311@qq.com;jianbool72@foxmail.com
  • 作者简介:孙中麟(2000—),男,硕士研究生,研究方向为新能源汽车电池,E-mail:1748566311@qq.com
  • 基金资助:
    西安石油大学研究生创新与实践能力培养计划资助(YCS23213134);陕西省教育厅科研计划项目(23JK0599);陕西省自然科学基础研究计划资助项目(2023-JC-QN-0658);长安大学高速公路筑养装备与技术教育部工程研究中心(300102253513);咸阳市二〇二三年重点研发计划”项目(L2023-ZDYF-QYCX-032)

Useful life prediction for lithium-ion batteries based on COA-LSTM and VMD

Zhonglin SUN(), Jiabo LI(), Di TIAN, Zhixuan WANG, Xiaojing XING   

  1. Xi'an Shiyou University, Xi'an 710000, Shaanxi, China
  • Received:2024-02-28 Revised:2024-03-11 Online:2024-09-28 Published:2024-09-20
  • Contact: Jiabo LI E-mail:1748566311@qq.com;jianbool72@foxmail.com

摘要:

电动汽车中的动力电池在其使用期间寿命的退化是不可避免的,因此研究电动汽车锂电池的使用寿命与利用效率具有重要意义。锂离子电池的剩余使用寿命(remaining useful life, RUL)是表征电池性能的一个重要指标。本文提出了基于郊狼算法优化长短期记忆网络(long short-term memory, LSTM)的动力电池RUL预测模型。首先,对锂离子电池的容量衰减特性进行分析,基于动力电池充放电曲线,提取等恒流充放电间隔、等压升时间间隔作为间接健康因子并通过Pearson法对其进行相关性分析。本文提出变分模态分解(variational mode decomposition, VMD)对健康因子进行分解,得到模态分量。采用LSTM作为动力电池模型来预测RUL,针对LSTM模型参数不精确会影响RUL的预测精度,提出郊狼优化算法(Coyote optimization algorithm, COA)对LSTM模型参数进行优化,以提升模型的预测能力。最后,基于NASA研究中心的公开数据集,将所提方法与LSTM、VMD-LSTM,高斯过程回归(Gaussian process regression, GPR),BP神经网络模型(backpropagation neural network)进行对比,对COA-LSTM模型的准确性进行验证。实验结果表明,RUL预测误差在2.1%以内,所提方法能够精确预测RUL。

关键词: 锂离子电池, 剩余使用寿命, 郊狼优化算法, 长短期记忆网络

Abstract:

Degradation of battery packs in electric vehicles is inevitable during their operational lifetime, making the estimated remaining useful life (RUL) a critical indicator of battery performance. This study proposes an optimized long short-term memory (LSTM) network-based RUL prediction model for EV lithium-ion batteries using the coyote optimization algorithm (COA). First, this study examines the capacity degradation characteristics of lithium-ion batteries. Indirect health indicators were extracted from the charge and discharge curves of the batteries, including constant current charging and discharging intervals and constant voltage holding time intervals. The correlations of these indicators were examined using the Pearson approach. Then, variational mode decomposition (VMD) was applied to decompose the health indicators into modal components. The LSTM model was used to predict the RUL of the battery pack. To address the issue of inaccurate LSTM model parameters affecting RUL prediction accuracy, COA was used to optimize these parameters and enhance the predictive capabilities of the model. The proposed method was validated using publicly available datasets from the NASA research center and compared with LSTM, VMD-LSTM, Gaussian process regression, and backpropagation neural network models. The experimental results indicate that the proposed approach can achieve RUL prediction errors of within 2%, demonstrating its ability to accurately predict RUL.

Key words: lithium-ion battery, remaining useful life, coyote optimization algorithm, long short-term memory

中图分类号: