储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3900-3916.doi: 10.19799/j.cnki.2095-4239.2025.0307
高远志1(), 殷戈1, 孙雪丽1, 张振明1, 苏宇1, 黄峰1, 冯小雅1, 何腾飞1, 王晨2, 张小松3
收稿日期:
2025-03-28
修回日期:
2025-07-06
出版日期:
2025-10-28
发布日期:
2025-10-20
通讯作者:
高远志
E-mail:gyz0213@outlook.com
作者简介:
高远志(1994—),男,博士,储能技术及太阳能综合利用,E-mail:gyz0213@outlook.com。
基金资助:
Yuanzhi GAO1(), Ge YIN1, Xueli SUN1, Zhenming ZHANG1, Yu SU1, Feng HUANG1, Xiaoya FENG1, Tengfei HE1, Chen WANG2, Xiaosong ZHANG3
Received:
2025-03-28
Revised:
2025-07-06
Online:
2025-10-28
Published:
2025-10-20
Contact:
Yuanzhi GAO
E-mail:gyz0213@outlook.com
摘要:
液态空气储能技术凭借其在提升电网稳定性方面的独特优势,正日益受到关注。本文首先介绍了液态空气储能的基本原理及其工作方式,接着综述了该技术在独立式系统、耦合式系统及多联产系统等不同应用场景下的国内外最新研究进展。目前,多个示范项目的建成投运验证了液态空气储能技术的可行性与广阔应用前景。尤其是在与液化天然气再气化、工业余热利用等其他能源系统耦合的过程中,该技术表现出显著的多能转化优势,实现了电、冷、热的高效综合利用。未来,液态空气储能技术将朝着提高系统循环效率、优化储能密度、降低成本等方向不断优化发展,并通过与其他能源系统的多能耦合模式,进一步推动其在电力系统中的大规模应用。在削峰填谷、调频调峰、平滑可再生能源输出等方面,液态空气储能有望成为支撑低碳能源系统转型的关键技术。
中图分类号:
高远志, 殷戈, 孙雪丽, 张振明, 苏宇, 黄峰, 冯小雅, 何腾飞, 王晨, 张小松. 液态空气储能技术研究现状与展望[J]. 储能科学与技术, 2025, 14(10): 3900-3916.
Yuanzhi GAO, Ge YIN, Xueli SUN, Zhenming ZHANG, Yu SU, Feng HUANG, Xiaoya FENG, Tengfei HE, Chen WANG, Xiaosong ZHANG. Research status and outlooks of liquid air energy storage technology[J]. Energy Storage Science and Technology, 2025, 14(10): 3900-3916.
[1] | ADU D, DU J G, ASOMANI S N, et al. Energy generation and carbon dioxide emission—The role of renewable energy for green development[J]. Energy Reports, 2024, 12: 1420-1430. DOI: 10.1016/j.egyr.2024.07.013. |
[2] | EVRO S, ONI B A, TOMOMEWO O S. Global strategies for a low-carbon future: Lessons from the US, China, and EU's pursuit of carbon neutrality[J]. Journal of Cleaner Production, 2024, 461: 142635. DOI: 10.1016/j.jclepro.2024.142635. |
[3] | 金之钧, 张川. 面向碳中和的中国能源转型路径思考[J]. 北京大学学报(自然科学版), 2024, 60(4): 767-774. DOI: 10.13209/j.0479-8023.2024.017. |
JIN Z J, ZHANG C. On China's energy transition pathway towards carbon neutrality[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60(4): 767-774. DOI: 10.13209/j. 0479-8023.2024.017. | |
[4] | RABI A M, RADULOVIC J, BUICK J M. Comprehensive review of liquid air energy storage (LAES) technologies[J]. Energies, 2023, 16(17): 6216. DOI: 10.3390/en16176216. |
[5] | KHALID M. Smart grids and renewable energy systems: Perspectives and grid integration challenges[J]. Energy Strategy Reviews, 2024, 51: 101299. DOI: 10.1016/j.esr.2024.101299. |
[6] | 宋祉慧, 田军见, 倪战士, 等. 考虑可再生能源不确定性的风光火储联合调度优化[J]. 洁净煤技术, 2024, 30(8): 117-127. DOI: 10.13226/j.issn.1006-6772.LC24021901. |
SONG Z H, TIAN J J, NI Z S, et al. Optimization of combined wind-solar-thermal-storage system considering the uncertainty of renewable energy output[J]. Clean Coal Technology, 2024, 30(8): 117-127. DOI: 10.13226/j.issn.1006-6772.LC24021901. | |
[7] | PEI N, SONG X L, ZHANG Z, et al. Optimizing the operation and allocating the cost of shared energy storage for multiple renewable energy stations in power generation side[J]. Energy Conversion and Management, 2024, 302: 118148. DOI: 10.1016/j.enconman.2024.118148. |
[8] | 范师嘉, 许光清, 赵庆, 等. 考虑储能的电力系统优化与中国碳中和情景分析[J]. 中国环境科学, 2024, 44(5): 2833-2846. DOI: 10.19674/j.cnki.issn1000-6923.20231211.024. |
FAN S J, XU G Q, ZHAO Q, et al. Power system optimization with energy storage and carbon neutrality scenario analysis of China[J]. China Environmental Science, 2024, 44(5): 2833-2846. DOI: 10.19674/j.cnki.issn1000-6923.20231211.024. | |
[9] | 王立健. 深冷液化空气储能系统的热力学分析与优化[D]. 北京: 华北电力大学, 2019. DOI: 10.27140/d.cnki.ghbbu.2019.001622. |
WANG L J. Thermodynamic analysis and optimization of cryogenic liquefied air energy storage system[D]. Beijing: North China Electric Power University, 2019. DOI: 10.27140/d.cnki.ghbbu.2019.001622. | |
[10] | 王晨. 液态空气储能系统中热质循环关键部件及性能提升方法研究[D]. 南京: 东南大学, 2022. DOI: 10.27014/d.cnki.gdnau.2022.003585. |
WANG C. Research on the key heat/mass circulation components and performance improvement of liquid air energy storage system[D]. Nanjing: Southeast University, 2022. DOI: 10.27014/d.cnki.gdnau.2022.003585. | |
[11] | KHAN M K, RAZA M, SHAHBAZ M, et al. Recent advancement in energy storage technologies and their applications[J]. Journal of Energy Storage, 2024, 92: 112112. DOI: 10.1016/j.est.2024.112112. |
[12] | LI Y, DING R. Perovskite fluorides for electrochemical energy storage and conversion: Structure, performance and mechanisms[J]. Nano Energy, 2024, 124: 109430. DOI: 10.1016/j.nanoen. 2024.109430. |
[13] | JIANG L, ZHOU H J, YANG H, et al. Applications of hierarchical metal-organic frameworks and their derivatives in electrochemical energy storage and conversion[J]. Journal of Energy Storage, 2022, 55: 105354. DOI: 10.1016/j.est.2022.105354. |
[14] | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43(1): 158-169. DOI: 10.13334/j.0258-8013.pcsee.220025. |
XIE X R, MA N J, LIU W, et al. Functions of energy storage in renewable energy dominated power systems: Review and prospect[J]. Proceedings of the CSEE, 2023, 43(1): 158-169. DOI: 10.13334/j.0258-8013.pcsee.220025. | |
[15] | MOHSENI S, BRENT A C. Probabilistic sizing and scheduling co-optimisation of hybrid battery/super-capacitor energy storage systems in micro-grids[J]. Journal of Energy Storage, 2023, 73: 109172. DOI: 10.1016/j.est.2023.109172. |
[16] | 孙培锋, 陆王琳, 白鹏, 等. 锂电池和超级电容混合储能辅助火电调频技术发展现状和趋势[J]. 动力工程学报, 2024, 44(3): 418-429. DOI: 10.19805/j.cnki.jcspe.2024.230657. |
SUN P F, LU W L, BAI P, et al. Development status and trends of lithium battery and supercapacitor hybrid energy storage assisted thermal power frequency regulation technology[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 418-429. DOI: 10.19805/j.cnki.jcspe.2024.230657. | |
[17] | MAITI T K, DIXIT P, SUHAG A, et al. Advancements in organic and inorganic shell materials for the preparation of microencapsulated phase change materials for thermal energy storage applications[J]. RSC Sustainability, 2023, 1(4): 665-697. DOI: 10.1039/D2SU00116K. |
[18] | KOÇAK B, FERNANDEZ A I, PAKSOY H. Review on sensible thermal energy storage for industrial solar applications and sustainability aspects[J]. Solar Energy, 2020, 209: 135-169. DOI: 10.1016/j.solener.2020.08.081. |
[19] | 曹军文, 郑云, 张文强, 等. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4): 302-311. DOI: 10.16511/j.cnki.qhdxxb.2021.25.007. |
CAO J W, ZHENG Y, ZHANG W Q, et al. Hydrogen energy development driven by the energy Internet[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(4): 302-311. DOI: 10.16511/j.cnki.qhdxxb.2021.25.007. | |
[20] | IRHAM A, ROSLAN M F, JERN K P, et al. Hydrogen energy storage integrated grid: A bibliometric analysis for sustainable energy production[J]. International Journal of Hydrogen Energy, 2024, 63: 1044-1087. DOI: 10.1016/j.ijhydene.2024.03.235. |
[21] | NAVAL N, YUSTA J M, SÁNCHEZ R, et al. Optimal scheduling and management of pumped hydro storage integrated with grid-connected renewable power plants[J]. Journal of Energy Storage, 2023, 73: 108993. DOI: 10.1016/j.est.2023.108993. |
[22] | 王雪林, 钟海旺. 新型电力系统背景下抽水蓄能和新型储能协同发展研究[J]. 全球能源互联网, 2024, 7(4): 363-371. DOI: 10.19705/j.cnki.issn2096-5125.2024.04.002. |
WANG X L, ZHONG H W. Research on the synergetic development of pumped storage and new energy storage under the background of new power system[J]. Journal of Global Energy Interconnection, 2024, 7(4): 363-371. DOI: 10.19705/j.cnki.issn2096-5125.2024.04.002. | |
[23] | JI W M, HONG F, ZHAO Y Z, et al. Applications of flywheel energy storage system on load frequency regulation combined with various power generations: A review[J]. Renewable Energy, 2024, 223: 119975. DOI: 10.1016/j.renene.2024.119975. |
[24] | YANG T T, LIU Z Y, ZENG D L, et al. Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array[J]. Energy, 2023, 281: 128239. DOI: 10. 1016/j.energy.2023.128239. |
[25] | XUE X J, LI S J, SHI T T, et al. Performance analysis of a compressed air energy storage incorporated with a biomass power generation system[J]. Applied Thermal Engineering, 2024, 248: 123281. DOI: 10.1016/j.applthermaleng.2024.123281. |
[26] | 万明忠, 王元媛, 李峻, 等. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
WAN M Z, WANG Y Y, LI J, et al. Research progress and prospect of compressed air energy storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 26-31. | |
[27] | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki. 2095-4239.2022.0105. | |
[28] | 季伟. 基于深冷技术的液态空气储能现状与前景[J]. 能源, 2021(1): 52-53. |
JI W. Present situation and prospect of liquid air energy storage based on cryogenic technology[J]. Energy, 2021(1): 52-53. | |
[29] | 孙潇, 蔡春荣, 罗志斌, 等. Highview Power液化空气储能中试装置热力学分析[J]. 南方能源建设, 2024, 11(2): 112-124. DOI: 10.16516/j.ceec.2024.2.11. |
SUN X, CAI C R, LUO Z B, et al. Thermodynamic analysis of highview power's liquid air energy storage pilot plant[J]. Southern Energy Construction, 2024, 11(2): 112-124. DOI: 10.16516/j.ceec.2024.2.11. | |
[30] | 谭增强, 王一坤, 牛拥军, 等. 双碳目标下煤电深度调峰及调频技术研究进展[J]. 热能动力工程, 2022, 37(8): 1-8. DOI: 10.16146/j.cnki.rndlgc.2022.08.001. |
TAN Z Q, WANG Y K, NIU Y J, et al. Research progress of deep peak regulation and frequency modulation technology for coal-fired power plant under double-carbon targets[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(8): 1-8. DOI: 10.16146/j.cnki.rndlgc.2022.08.001. | |
[31] | YANG Y, TONG L G, LIU Y X, et al. A novel integrated system of hydrogen liquefaction process and liquid air energy storage (LAES): Energy, exergy, and economic analysis[J]. Energy Conversion and Management, 2023, 280: 116799. DOI: 10.1016/j.enconman.2023.116799. |
[32] | KIM K J, KIM B, BYEON B, et al. Thermal energy storage unit (TESU) design for high round-trip efficiency of liquid air energy storage (LAES)[J]. Cryogenics, 2022, 128: 103570. DOI: 10.1016/j.cryogenics.2022.103570. |
[33] | CAO Y, BASHIRI MOUSAVI S, AHMADI P. Techno-economic assessment of a biomass-driven liquid air energy storage (LAES) system for optimal operation with wind turbines[J]. Fuel, 2022, 324: 124495. DOI: 10.1016/j.fuel.2022.124495. |
[34] | BORRI E, TAFONE A, ROMAGNOLI A, et al. A review on liquid air energy storage: History, state of the art and recent developments[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110572. DOI: 10.1016/j.rser.2020.110572. |
[35] | VECCHI A, LI Y L, DING Y L, et al. Liquid air energy storage (LAES): A review on technology state-of-the-art, integration pathways and future perspectives[J]. Advances in Applied Energy, 2021, 3: 100047. DOI: 10.1016/j.adapen.2021.100047. |
[36] | DAMAK C, LEDUCQ D, HOANG H M, et al. Liquid Air Energy Storage (LAES) as a large-scale storage technology for renewable energy integration—A review of investigation studies and near perspectives of LAES[J]. International Journal of Refrigeration, 2020, 110: 208-218. DOI: 10.1016/j.ijrefrig.2019.11.009. |
[37] | QI M, PARK J, LEE I, et al. Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112201. DOI: 10.1016/j.rser.2022.112201. |
[38] | ABDO R F, PEDRO H T C, KOURY R N N, et al. Performance evaluation of various cryogenic energy storage systems[J]. Energy, 2015, 90: 1024-1032. DOI: 10.1016/j.energy.2015.08.008. |
[39] | O'CALLAGHAN O, DONNELLAN P. Liquid air energy storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111113. DOI: 10.1016/j.rser.2021.111113. |
[40] | HAMDY S, MOSER F, MOROSUK T, et al. Exergy-based and economic evaluation of liquefaction processes for cryogenics energy storage[J]. Energies, 2019, 12(3): 493. DOI: 10.3390/en12030493. |
[41] | BORRI E, TAFONE A, ROMAGNOLI A, et al. A preliminary study on the optimal configuration and operating range of a "microgrid scale" air liquefaction plant for Liquid Air Energy Storage[J]. Energy Conversion and Management, 2017, 143: 275-285. DOI: 10.1016/j.enconman.2017.03.079. |
[42] | YILMAZ C. Thermodynamic performance analysis of gas liquefaction cycles for cryogenic applications[J]. Journal of Thermal Engineering, 2019, 5(1): 62-75. |
[43] | WEN N, TAN H B. Modelling and optimization of liquid air energy storage systems with different liquefaction cycles[J]. Energy Conversion and Management, 2022, 271: 116321. DOI: 10.1016/j.enconman.2022.116321. |
[44] | PENG H, SHAN X K, YANG Y, et al. A study on performance of a liquid air energy storage system with packed bed units[J]. Applied Energy, 2018, 211: 126-135. DOI: 10.1016/j.apenergy.2017.11.045. |
[45] | 符玲莉. 液化空气储能系统热力性能研究及优化[D]. 南京: 东南大学, 2020. DOI: 10.27014/d.cnki.gdnau.2020.000434. |
[46] | HAMDY S, MOROSUK T, TSATSARONIS G. Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles[J]. Energy, 2017, 138: 1069-1080. DOI: 10.1016/j.energy.2017.07.118. |
[47] | LI Y L, CHEN H S, DING Y L. Fundamentals and applications of cryogen as a thermal energy carrier: A critical assessment[J]. International Journal of Thermal Sciences, 2010, 49(6): 941-949. DOI: 10.1016/j.ijthermalsci.2009.12.012. |
[48] | Zeng R, Gan J, Guo B, et al. Thermodynamic performance analysis of solid oxide fuel cell-combined cooling, heating and power system with integrated supercritical CO2 power cycle-organic Rankine cycle and absorption refrigeration cycle[J]. Energy, 2023, 283: 129133. |
[49] | ANTONELLI M, BARSALI S, DESIDERI U, et al. Liquid air energy storage: Potential and challenges of hybrid power plants[J]. Applied Energy, 2017, 194: 522-529. DOI: 10.1016/j.apenergy. 2016.11.091. |
[50] | CHEN J X, YANG L W, AN B L, et al. Unsteady analysis of the cold energy storage heat exchanger in a liquid air energy storage system[J]. Energy, 2022, 242: 122989. DOI: 10.1016/j.energy. 2021.122989. |
[51] | HÜTTERMANN L, SPAN R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems[J]. Energy, 2019, 174: 236-245. DOI: 10.1016/j.energy.2019.02.149. |
[52] | GUO L N, JI W, FAN X Y, et al. Experimental analysis of packed bed cold energy storage in the liquid air energy storage system[J]. Journal of Energy Storage, 2024, 82: 110282. DOI: 10.1016/j.est.2023.110282. |
[53] | FAN X Y, GUO L N, JI W, et al. Liquid air energy storage system based on fluidized bed heat transfer[J]. Renewable Energy, 2023, 215: 118928. DOI: 10.1016/j.renene.2023.118928. |
[54] | FAN X Y, XU H, LI Y H, et al. A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration[J]. Applied Energy, 2024, 371: 123739. DOI: 10.1016/j.apenergy.2024.123739. |
[55] | BASHIRI MOUSAVI S, AHMADI P, HANAFIZADEH P, et al. Dynamic simulation and techno-economic analysis of liquid air energy storage with cascade phase change materials as a cold storage system[J]. Journal of Energy Storage, 2022, 50: 104179. DOI: 10.1016/j.est.2022.104179. |
[56] | TAFONE A, ROMAGNOLI A. A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage[J]. Energy, 2023, 281: 128203. DOI: 10.1016/j.energy.2023.128203. |
[57] | WANG C, YOU Z P, DING Y L, et al. Liquid air energy storage with effective recovery, storage and utilization of cold energy from liquid air evaporation[J]. Energy Conversion and Management, 2022, 267: 115708. DOI: 10.1016/j.enconman.2022.115708. |
[58] | SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98. DOI: 10.1016/j.apenergy.2016.12.118. |
[59] | HE Q, WANG L J, ZHOU Q, et al. Thermodynamic analysis and optimization of liquefied air energy storage system[J]. Energy, 2019, 173: 162-173. DOI: 10.1016/j.energy.2019.02.057. |
[60] | 赵明, 梁俊宇, 张晓磊, 等. 液态压缩空气储能系统空气节流液化过程热力性能[J]. 云南电力技术, 2016, 44(6): 90-93. |
ZHAO M, LIANG J Y, ZHANG X L, et al. Thermodynamic properties study of CAES(liquid air energy storage system) air restrictor liquefaction process[J]. Yunnan Electric Power, 2016, 44(6): 90-93. | |
[61] | TAFONE A, ROMAGNOLI A, BORRI E, et al. New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system[J]. Applied Energy, 2019, 250: 1641-1656. DOI: 10.1016/j.apenergy.2019.04.171. |
[62] | LIU Z X, KIM D, GUNDERSEN T. Optimization and analysis of different liquid air energy storage configurations[J]. Computers & Chemical Engineering, 2023, 169: 108087. DOI: 10.1016/j.compchemeng.2022.108087. |
[63] | VECCHI A, LI Y L, MANCARELLA P, et al. Integrated techno-economic assessment of liquid air energy storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance[J]. Applied Energy, 2020, 262: 114589. DOI: 10.1016/j.apenergy.2020.114589. |
[64] | LIANG T, SHE X H, LI Y L, et al. Thermo-economic multi-objective optimization of the liquid air energy storage system[J]. Journal of Energy Storage, 2024, 84: 110756. DOI: 10.1016/j.est.2024.110756. |
[65] | VECCHI A, NAUGHTON J, LI Y L, et al. Multi-mode operation of a Liquid Air Energy Storage (LAES) plant providing energy arbitrage and reserve services—Analysis of optimal scheduling and sizing through MILP modelling with integrated thermodynamic performance[J]. Energy, 2020, 200: 117500. DOI: 10.1016/j.energy.2020.117500. |
[66] | WANG Z K, FAN X Y, LI J X, et al. Coupled system of liquid air energy storage and air separation unit: A novel approach for large-scale energy storage and industrial gas production[J]. Journal of Energy Storage, 2024, 92: 112076. DOI: 10.1016/j.est.2024.112076. |
[67] | DING X Q, DUAN L Q, LI D, et al. Dynamic characteristics of a novel liquid air energy storage system coupled with solar heat and waste heat recovery[J]. Renewable Energy, 2024, 221: 119780. DOI: 10.1016/j.renene.2023.119780. |
[68] | ZHOU Y F, ZHANG H F, JI S Y, et al. Whole process dynamic performance analysis of a solar-aided liquid air energy storage system: From single cycle to multi-cycle[J]. Applied Energy, 2024, 373: 123938. DOI: 10.1016/j.apenergy.2024.123938. |
[69] | PARK J, CHO S, QI M, et al. Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility[J]. Energy, 2021, 216: 119308. DOI: 10.1016/j.energy.2020.119308. |
[70] | SONG J T, FAN Y P, CHENG Z M, et al. Thermodynamic analysis of an air liquid energy storage system coupling Rankine cycle and methane steam reforming to improve system electrical conversion and energy efficiency[J]. Renewable Energy, 2023, 219: 119586. DOI: 10.1016/j.renene.2023.119586. |
[71] | 史科锐, 莫春兰, 党玉荣, 等. 基于太阳能和双有机朗肯循环的液态空气储能系统特性研究[J]. 可再生能源, 2024, 42(5): 601-611. DOI: 10.13941/j.cnki.21-1469/tk.2024.05.010. |
SHI K R, MO C L, DANG Y R, et al. Performance analysis on liquid air energy storage system based on solar energy and dual Organic Rankine Cycle[J]. Renewable Energy Resources, 2024, 42(5): 601-611. DOI: 10.13941/j.cnki.21-1469/tk.2024.05.010. | |
[72] | DING X Q, DUAN L Q, ZHOU Y F, et al. Thermodynamic analysis and economic assessment of a novel multi-generation liquid air energy storage system coupled with thermochemical energy storage and gas turbine combined cycle[J]. Journal of Energy Storage, 2023, 60: 106614. DOI: 10.1016/j.est.2023.106614. |
[73] | ZHANG T T, SHE X H, NIE B J, et al. Integration of liquid air energy storage with ammonia synthesis process for resource efficiency and cost-effectiveness[J]. Journal of Energy Storage, 2024, 97: 112637. DOI: 10.1016/j.est.2024.112637. |
[74] | PARK J H, HEO J Y, LEE J I. Techno-economic study of nuclear integrated liquid air energy storage system[J]. Energy Conversion and Management, 2022, 251: 114937. DOI: 10.1016/j.enconman. 2021.114937. |
[75] | BANERJEE T, BRAVO J, SARUNAC N, et al. Sustainable energy storage solutions for coal-fired power plants: A comparative study on the integration of liquid air energy storage and hydrogen energy storage systems[J]. Energy Conversion and Management, 2024, 310: 118473. DOI: 10.1016/j.enconman.2024.118473. |
[76] | ZHANG L G, YE K, WANG Y Z, et al. Performance analysis of a hybrid system combining cryogenic separation carbon capture and liquid air energy storage (CS-LAES)[J]. Energy, 2024, 290: 129867. DOI: 10.1016/j.energy.2023.129867. |
[77] | ESMAEILION F, SOLTANI M, DUSSEAULT M B, et al. Performance investigation of a novel polygeneration system based on liquid air energy storage[J]. Energy Conversion and Management, 2023, 277: 116615. DOI: 10.1016/j.enconman.2022.116615. |
[78] | DING X Q, ZHOU Y F, ZHENG N, et al. Energy, exergy, and economic analyses of a novel liquid air energy storage system with cooling, heating, power, hot water, and hydrogen cogeneration[J]. Energy Conversion and Management, 2024, 305: 118262. DOI: 10.1016/j.enconman.2024.118262. |
[79] | CHEN X Y, CHEN Y, FU L, et al. Photovoltaic-driven liquid air energy storage system for combined cooling, heating and power towards zero-energy buildings[J]. Energy Conversion and Management, 2024, 300: 117959. DOI: 10.1016/j.enconman.2023.117959. |
[80] | QI M, KIM M, DAT VO N, et al. Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage[J]. Applied Energy, 2022, 314: 118965. DOI: 10.1016/j.apenergy. 2022.118965. |
[81] | CUI S S, SONG J T, WANG T T, et al. Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system[J]. Energy, 2021, 235: 121322. DOI: 10.1016/j.energy.2021.121322. |
[82] | BABAEI S M, NABAT M H, LASHGARI F, et al. Thermodynamic analysis and optimization of an innovative hybrid multi-generating liquid air energy storage system[J]. Journal of Energy Storage, 2021, 43: 103262. DOI: 10.1016/j.est.2021.103262. |
[83] | MAZZONI S, OOI S, TAFONE A, et al. Liquid Air Energy Storage as a polygeneration system to solve the unit commitment and economic dispatch problems in micro-grids applications[J]. Energy Procedia, 2019, 158: 5026-5033. DOI: 10.1016/j.egypro. 2019.01.660. |
[84] | ZHANG Z Y, CHEN Y, CHEN X Y, et al. A real options-based framework for multi-generation liquid air energy storage investment decision under multiple uncertainties and policy incentives[J]. Energy, 2024, 309: 133025. DOI: 10.1016/j.energy.2024.133025. |
[85] | SMITH E M. Storage of electrical energy using supercritical liquid air[J]. Proceedings of the Institution of Mechanical Engineers, 1977, 191(1): 289-298. DOI: 10.1243/pime_proc_1977_191_035_02. |
[86] | 郭祚刚, 马溪原, 雷金勇, 等. 压缩空气储能示范进展及商业应用场景综述[J]. 南方能源建设, 2019, 6(3): 17-26. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.003. |
GUO Z G, MA X Y, LEI J Y, et al. Review on demonstration progress and commercial application scenarios of compressed air energy storage system[J]. Southern Energy Construction, 2019, 6(3): 17-26. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.003. | |
[87] | 王京尧, 杨晓宇. 绿色引擎,前景可期——液态空气储能关键设备国产化再下一城[J]. 中国石油和化工, 2024(9): 41-43. |
WANG J Y, YANG X Y. Green engine, promising prospect-localization of key equipment for liquid air energy storage will reach a new level[J]. China Petroleum and Chemical Industry, 2024(9): 41-43. |
[1] | 艾立旺, 王伟伟, 蒋思远, 封海潮, 肖磊, 许孝卓. 直线电机重力储能系统充放电策略优化[J]. 储能科学与技术, 2025, 14(9): 3476-3487. |
[2] | 张子澳, 王星宇, 路新亮, 殷勇高, 王晨. 面向液态空气储能的新型径向流储冷填充床性能研究[J]. 储能科学与技术, 2025, 14(9): 3311-3318. |
[3] | 屈笑羽, 豆流鑫. 储能技术在食品电商冷链物流中的创新应用与前景分析[J]. 储能科学与技术, 2025, 14(6): 2336-2338. |
[4] | 张庆平. 储能技术助力农产品电商冷链物流配送的优化策略[J]. 储能科学与技术, 2025, 14(5): 2078-2080. |
[5] | 梁振飞, 王兴兴, 胡皓晨, 李艳红, 欧阳博学, 孙晓云, 高瑞茂, 叶骏, 王德仁. 锌溴液流电池电解液与隔膜技术研究进展[J]. 储能科学与技术, 2025, 14(2): 583-600. |
[6] | 高宇辰, 李蔚林, 陈翔, 袁誉杭, 牛艺琳, 张强. DeepSeek在储能研究中的应用前景展望[J]. 储能科学与技术, 2025, 14(2): 467-478. |
[7] | 卢鸣. 基于数据挖掘的热能储存异常数据检测方法[J]. 储能科学与技术, 2025, 14(2): 831-833. |
[8] | 许堉坤, 俞钧, 蒋超, 王婧骅, 赵婉茹. 成本角度分析储能技术与电力系统的优化设计[J]. 储能科学与技术, 2025, 14(2): 876-878. |
[9] | 孙爱民, 洪建军, 郑建锋. 新能源并网中主要储能技术类型[J]. 储能科学与技术, 2025, 14(2): 879-882. |
[10] | 马斌, 张宾, 韩锦立. 基于储能技术的轨道电车能源回收与控制策略[J]. 储能科学与技术, 2025, 14(10): 4040-4042. |
[11] | 田野, 王珊珊, 姚旭, 刘佳鑫, 韩晓冬. 配电网通信与分布式储能技术协同应用的意义与发展[J]. 储能科学与技术, 2025, 14(1): 190-192. |
[12] | 闻娜, 刘成伟, 张晓阳, 高健, 麻丽明. 智能电网中自动化控制与储能技术的协同应用研究[J]. 储能科学与技术, 2025, 14(1): 219-221. |
[13] | 袁誉杭, 高宇辰, 张俊东, 高岩斌, 王超珑, 陈翔, 张强. 大语言模型在储能研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2907-2919. |
[14] | 朱文韬, 周杨, 徐艺敏, 施涛. 电池储能技术在新能源发电系统中的应用与优化[J]. 储能科学与技术, 2024, 13(8): 2737-2739. |
[15] | 黄思远, 王晨, 梁婷, 姜竹, 李佳静, 折晓会, 张小松. 液态空气储能耦合综合能源系统热电联储联供优化配置研究[J]. 储能科学与技术, 2024, 13(6): 1929-1939. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||