1 |
LYU J H, JI J Y, LI C, et al. Analysis of energy carbon emission driving mechanism and decoupling level under "Dual Carbon" goal: Taking the three northeastern provinces as an example[J]. Ecological Economy, 2024, 40(10): 39-46.
|
2 |
POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499. DOI: 10.1038/35035045.
|
3 |
李晋, 王青松, 孔得朋, 等. 锂离子电池储能安全评价研究进展[J]. 储能科学与技术, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
|
LI J, WANG Q S, KONG D P, et al. Research progress on the safety assessment of lithium-ion battery energy storage[J]. Energy Storage Science and Technology, 2023, 12(7): 2282-2301. DOI: 10.19799/j.cnki.2095-4239.2023.0252.
|
4 |
PAUL A, MAGEE R, WILCZEWSKI W, et al. Application of the multi-species, multi-reaction model to coal-derived graphite for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2024, 171(2): 023501. DOI: 10.1149/1945-7111/ad2061.
|
5 |
YIN H, TANG J, ZHANG K, et al. Precision pre-lithiated graphite anode for lithium-ion capacitors with exceptional high-temperature cycling stability[J]. Chemistry Letters, 2024, 53(3): upae027. DOI: 10.1093/chemle/upae027.
|
6 |
VINAYAK A K, WANG X L. A green approach for cohesive recycling and regeneration of electrode active materials from spent lithium-ion batteries[J]. The Canadian Journal of Chemical Engineering, 2024, 102(5): 1852-1862. DOI: 10.1002/cjce.25166.
|
7 |
ZENG Z Y, ZHANG X W, BUSTILLO K, et al. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy[J]. Nano Letters, 2015, 15(8): 5214-5220. DOI: 10.1021/acs.nanolett.5b02483.
|
8 |
XIONG F Y, CAI Z Y, QU L B, et al. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers: A stable anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 12625-12630. DOI: 10.1021/acsami.5b02978.
|
9 |
MUELLER F, BRESSER D, CHAKRAVADHANULA V S K, et al. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries[J]. Journal of Power Sources, 2015, 299: 398-402. DOI: 10.1016/j.jpowsour.2015.08.018.
|
10 |
SON S B, YERSAK T A, PIPER D M, et al. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte[J]. Advanced Energy Materials, 2014, 4(3): 1300961. DOI: 10.1002/aenm.201300961.
|
11 |
GUO S P, LI J C, MA Z, et al. A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries[J]. Journal of Materials Science, 2017, 52(4): 2345-2355. DOI: 10.1007/s10853-016-0527-y.
|
12 |
HOU B H, WANG Y Y, GUO J Z, et al. Pseudocapacitance-boosted ultrafast Na storage in a pie-like FeS@C nanohybrid as an advanced anode material for sodium-ion full batteries[J]. Nanoscale, 2018, 10(19): 9218-9225. DOI: 10.1039/C7NR09674G.
|
13 |
WANG Q, ZHANG W, GUO C, et al. In-situ construction of 3D interconnected FeS@Fe3C@Graphitic carbon networks for high-performance sodium-ion batteries[J]. Advanced Functional Materials, 2017, 27(41): DOI: 10.1002/adfm.201703390.
|
14 |
LI Q D, WEI Q L, ZUO W B, et al. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries[J]. Chemical Science, 2017, 8(1): 160-164. DOI: 10.1039/C6SC02716D.
|
15 |
HU Z, ZHU Z Q, CHENG F Y, et al. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries[J]. Energy & Environmental Science, 2015, 8(4): 1309-1316. DOI: 10.1039/C4EE03759F.
|
16 |
FANG X, GE M Y, RONG J P, et al. Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life[J]. Journal of Materials Chemistry A, 2013, 1(12): 4083-4088. DOI: 10.1039/C3TA01534C.
|
17 |
WANG X F, XIANG Q Y, LIU B, et al. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries[J]. Scientific Reports, 2013, 3: 2007. DOI: 10.1038/srep02007.
|
18 |
FEI L, LIN Q L, YUAN B, et al. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance[J]. ACS Applied Materials & Interfaces, 2013, 5(11): 5330-5335. DOI: 10.1021/am401239f.
|
19 |
WEI X, LI W H, SHI J N, et al. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27804-27809. DOI: 10.1021/acsami.5b09062.
|
20 |
ZHOU F, ZHAO X M, YUAN C G, et al. Hydrothermal synthesis of ultrafine β-FeOOH nanorods as cathode materials for lithium ion batteries[J]. Chemistry Letters, 2006, 35(12): 1410-1411. DOI: 10.1246/cl.2006.1410.
|
21 |
苏永进, 耿茂宁, 韩东梅. 锂离子电池用聚多巴胺衍生碳包覆硅纳米颗粒复合材料的制备与性能[J]. 电镀与涂饰, 2023, 42(21): 47-53. DOI: 10.19289/j.1004-227x.2023.21.008.
|
|
SU Y J, GENG M N, HAN D M. Preparation and properties of polydopamine-derived carbon-coated silicon nanoparticle composites for lithiumion batteries[J]. Electroplating & Finishing, 2023, 42(21): 47-53. DOI: 10.19289/j.1004-227x.2023.21.008.
|
22 |
XU X J, LIU Z B, JI S M, et al. Rational synthesis of ternary FeS@TiO2@C nanotubes as anode for superior Na-ion batteries[J]. Chemical Engineering Journal, 2019, 359: 765-774. DOI: 10.1016/j.cej.2018.11.191.
|
23 |
MALLICK P. Influence of different materials on the microstructure and optical band gap of α-Fe2O3 nanoparticles[J]. Materials Science-Poland, 2014, 32(2): 193-197. DOI: 10.2478/s13536-013-0171-z.
|
24 |
CAO Z J, SONG H H, CAO B, et al. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2017, 364: 208-214. DOI: 10.1016/j.jpowsour.2017.08.018.
|
25 |
CHEN K, LI O L. N-doped ZnSe/CoSe2@RGO core-shell heterostructure nanocomposites with activated electrons for efficient ORR activity[J]. Materials Letters, 2022, 320: 132398. DOI: 10.1016/j.matlet.2022.132398.
|
26 |
AMAMA P B, ZEMLYANOV D, SUNDARAKANNAN B, et al. XPS and Raman characterization of single-walled carbon nanotubes grown from pretreated Fe2O3 nanoparticles[J]. Journal of Physics D: Applied Physics, 2008, 41(16): 165306. DOI: 10.1088/0022-3727/41/16/165306.
|
27 |
QIAN X F, WU Y W, KAN M, et al. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants[J]. Applied Catalysis B: Environmental, 2018, 237: 513-520. DOI: 10.1016/j.apcatb.2018.05.074.
|
28 |
DU H F, GU S, LIU R W, et al. Highly active and inexpensive iron phosphide nanorods electrocatalyst towards hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14272-14278. DOI: 10.1016/j.ijhydene.2015.02.099.
|
29 |
XIA X F, LEI W, HAO Q L, et al. One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)x (M=FeO, Ni, Co) nanoparticles[J]. Electrochimica Acta, 2013, 113: 117-126. DOI: 10.1016/j.electacta. 2013.09.072.
|
30 |
HE X, ZHANG X D, YIN S, et al. Interface engineering of space-confined Fe3O4/FeS heterostructures: Synergistic effect and ultrastable Li storage[J]. Industrial & Engineering Chemistry Research, 2023, 62(21): 8312-8326. DOI: 10.1021/acs.iecr. 3c00559.
|
31 |
CHEN L J, SONG K M, SHI J, et al. PAANa-induced ductile SEI of bare micro-sized FeS enables high sodium-ion storage performance[J]. Science China Materials, 2021, 64(1): 105-114. DOI: 10.1007/s40843-020-1389-x.
|