1 |
CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151. DOI: 10.1021/acsenergylett.0c01545.
|
2 |
ZHANG H, SONG Z B, FANG J J, et al. Electrolyte optimization for graphite anodes toward fast charging[J]. The Journal of Physical Chemistry C, 2023, 127(6): 2755-2765. DOI: 10.1021/acs.jpcc.2c08357.
|
3 |
LI Y, YAN H, XU B, et al. Electrochemical intercalation in atomically thin van der waals materials for structural phase transition and device applications[J]. Advanced Materials, 2021, 33(6): 2000581. DOI: 10.1002/adma.202000581.
|
4 |
郝奕帆, 祝夏雨, 王静, 等. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239. 2023.0081.
|
|
HAO Y F, ZHU X Y, WANG J, et al. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081.
|
5 |
ZENG C, LIANG J N, CUI C, et al. Dynamic investigation of battery materials via advanced visualization: From particle, electrode to cell level[J]. Advanced Materials, 2022, 34(52): 2270361. DOI: 10.1002/adma. 202270361.
|
6 |
BANERJEE J, DUTTA K. Materials for electrodes of Li-ion batteries: Issues related to stress development[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(3): 218-238. DOI: 10.1080/10408436.2016.1173011.
|
7 |
WANG B, LE FEVRE L W, BROOKFIELD A, et al. Resolution of lithium deposition versus intercalation of graphite anodes in lithium ion batteries: An in situ electron paramagnetic resonance study[J]. Angewandte Chemie International Edition, 2021, 60(40): 21860-21867. DOI: 10.1002/anie.202106178.
|
8 |
LI T, PANDA P K, HSIEH C T, et al. Lithium iron phosphate cathode supported solid lithium batteries with dual composite solid electrolytes enabling high energy density and stable cyclability[J]. Journal of Energy Storage, 2024, 81: 110444. DOI: 10.1016/j.est.2024.110444.
|
9 |
冀昱辰, 杨卢奕, 林海, 等. 原位表征技术在电池界面演化机制研究中的应用[J]. 储能科学与技术, 2025, 14(2): 740-754. DOI: 10. 19799/j.cnki.2095-4239.2024.0743.
|
|
JI Y C, YANG L Y, LIN H, et al. Applications of in situ characterization techniques in studying battery interfacial evolution mechanisms[J]. Energy Storage Science and Technology, 2025, 14(2): 740-754. DOI: 10.19799/j.cnki.2095-4239.2024.0743.
|
10 |
LĂCĂTUŞU M E, KUHN L T, JOHNSEN R E, et al. A multimodal operando neutron study of the phase evolution in a graphite electrode[EB/OL]. 2021: 2104.03564. https://arxiv.org/abs/2104. 03564v1.
|
11 |
QIU S, XIAO L F, SUSHKO M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. DOI: 10.1002/aenm.201700403.
|
12 |
SCHWEIDLER S, DE BIASI L, SCHIELE A, et al. Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and In situ pressure analysis study[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8829-8835. DOI: 10. 1021/acs.jpcc.8b01873.
|
13 |
SHI B Q, KANG Y L, XIE H M, et al. In situ measurement and experimental analysis of lithium mass transport in graphite electrodes[J]. Electrochimica Acta, 2018, 284: 142-148. DOI: 10. 1016/j.electacta.2018.07.079.
|
14 |
KNORR J, GOMEZ-MARTIN A, HSIAO H C, et al. Effect of different charge rates on the active material lithiation of Gr/SiOx blend anodes in lithium-ion cells[J]. Journal of Energy Storage, 2024, 86: 111151. DOI: 10.1016/j.est.2024.111151.
|
15 |
LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-based metal-ion batteries[J]. Advanced Functional Materials, 2022, 32(9): 2107277. DOI: 10.1002/adfm.202107277.
|
16 |
ZHAO H, YUAN W, LIU G. Hierarchical electrode design of high-capacity alloy nanomaterials for lithium-ion batteries[J]. Nano Today, 2015, 10(2): 193-212. DOI: 10.1016/j.nantod.2015.02.009.
|
17 |
LI B R, CHAO Y, LI M C, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries[J]. Electrochemical Energy Reviews, 2023, 6(1): 7. DOI: 10.1007/s41918-022-00147-5.
|
18 |
GE X, CAO S K, LV Z S, et al. Mechano-graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium-ion batteries[J]. Advanced Materials, 2022, 34(45): 2206797. DOI: 10.1002/adma.202206797.
|
19 |
聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903.
|
|
NIE P, XU G Y, JIANG J M, et al. Prelithiation technologies and application in high energy silicon anodes[J]. Energy Storage Science and Technology, 2017, 6(5): 889-903.
|
20 |
江成凡, 黄俊, 谢海波. 提高硬碳材料钠离子电池首次库仑效率的研究进展[J]. 储能科学与技术, 2024, 13(3): 825-840. DOI: 10.19799/j.cnki.2095-4239.2023.0751.
|
|
JIANG C F, HUANG J, XIE H B. Improving the initial coulombic efficiency of hard carbon materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(3): 825-840. DOI: 10.19799/j.cnki.2095-4239.2023.0751.
|
21 |
LI D W, WANG Y K. In-situ measurements of mechanical property and stress evolution of commercial graphite electrode[J]. Materials & Design, 2020, 194: 108887. DOI: 10.1016/j.matdes. 2020.108887.
|