储能科学与技术 ›› 2025, Vol. 14 ›› Issue (6): 2232-2239.doi: 10.19799/j.cnki.2095-4239.2025.0058

• 储能材料与器件 • 上一篇    下一篇

FeOOH包覆改性FeS锂离子电池负极材料

徐章杰1,2(), 孙铮岳3, 张鑫焱3, 张吉亮1,2(), 于颖超3, 董闯1   

  1. 1.大连交通大学材料科学与工程学院,辽宁 大连 116028
    2.钛科(大连)新能源有限公司,辽宁 大连 116000
    3.大连交通大学机械工程学院,辽宁 大连 116028
  • 收稿日期:2025-01-15 修回日期:2025-01-23 出版日期:2025-06-28 发布日期:2025-06-27
  • 通讯作者: 张吉亮 E-mail:xu1178900808@163.com;15248127383@163.com
  • 作者简介:徐章杰(1996—),男,博士,研究方向为低温锂离子电池,E-mail:xu1178900808@163.com

FeOOH coating on FeS as high-performance anode materials for Li-ion batteries

Zhangjie XU1,2(), Zhengyue SUN3, Xinyan ZHANG3, Jiliang ZHANG1,2(), Yingchao YU3, Chuang DONG1   

  1. 1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
    2.Tech (Dalian) New Energy Co. , Ltd, Dalian 116000, Liaoning, China
    3.School of mechanical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
  • Received:2025-01-15 Revised:2025-01-23 Online:2025-06-28 Published:2025-06-27
  • Contact: Jiliang ZHANG E-mail:xu1178900808@163.com;15248127383@163.com

摘要:

硫化亚铁(FeS)因具有较高的理论比容量、安全的储锂电压平台(1.5 V)、丰富的矿藏储备以及环境友好等优点,有望成为下一代新型锂离子电池储能负极材料。然而充放电过程中较大的体积膨胀导致不可逆的容量损失,循环充放电性能差。包覆层能够提供一个额外的支撑结构,帮助电极材料更好地应对这些体积变化,减少体积膨胀的程度。因此,本工作采用固相法合成FeS负极材料,通过湿法球磨在FeS表面包覆FeOOH得到FeS@FeOOH复合材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子谱(XPS)、透射电子显微镜(TEM)表征晶体结构和形貌。结果表明,当球磨转速为300 r/min时,包覆层为四方晶系β-FeOOH。当球磨转速为600 r/min时,包覆层为正交晶系α-FeOOH与四方晶系β-FeOOH并存。电化学测试结果显示,当湿法球磨转速为600 r/min时,在包覆层为α-FeOOH与β-FeOOH协同作用下,FeS@FeOOH复合材料在1 A/g电流密度下100次循环容量保持率为100%,还具有较小的电荷转移电阻Rct(68.84 Ω)。进行低温放电测试发现,电流密度100 mA/g下,-40 ℃的放电比容量保持率为0 ℃的99.8%。本研究提供了一种简单高效的FeS包覆策略,为FeS负极材料在储能领域的商业化应用提供了参考。

关键词: 硫化亚铁, 负极材料, 双包覆, 湿法球磨, 羟基氧化铁

Abstract:

Ferrous sulfide (FeS) is a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity, safe lithium storage voltage plateau (1.5 V), abundant mineral reserves, and environmental compatibility. However, the material suffers from significant volume expansion during charge-discharge cycles, resulting in irreversible capacity loss and poor cycling performance. A coating layer can provide additional mechanical support, helping the electrode accommodate volume changes and thereby mitigating expansion effects. In this study, FeS was synthesized via a solid-phase method, and FeS@FeOOH composite materials were prepared by coating FeOOH onto the FeS surface through wet ball milling. The crystal structure and morphology were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Results show that at a ball milling speed of 300 r/min, the coating consists of tetragonal β-FeOOH, while at 600 r/min, the coating comprises both orthorhombic α-FeOOH and tetragonal β-FeOOH phases. Electrochemical tests demonstrate that the composite prepared at 600 r/min achieves 100% capacity retention after 100 cycles at 1 A/g, owing to the synergistic effect of α-FeOOH and β-FeOOH in the coating layer. Furthermore, it exhibits a low charge transfer resistance (Rct) of 68.84 Ω. Low-temperature discharge testing reveals that at -40 ℃ and a current density of 100 mA/g, the discharge specific capacity retention reaches 99.8% of that at 0 ℃. This study proposes a straightforward and effective FeS surface modification strategy, providing a reference for the commercial application of FeS-based anodes in energy storage systems.

Key words: ferrous sulfide, anode material, double coating, wet ball milling, hydroxyl iron oxides

中图分类号: